Available models#
Model |
Local/global |
Data layout |
Architecture/method |
Implementation |
---|---|---|---|---|
DeepAR [Salinas et al. 2020] |
Global |
Univariate |
RNN |
|
DeepState [Rangapuram et al. 2018] |
Global |
Univariate |
RNN, state-space model |
|
DeepFactor [Wang et al. 2019] |
Global |
Univariate |
RNN, state-space model, Gaussian process |
|
Deep Renewal Processes [Türkmen et al. 2021] |
Global |
Univariate |
RNN |
|
GPForecaster |
Global |
Univariate |
MLP, Gaussian process |
|
MQ-CNN [Wen et al. 2017] |
Global |
Univariate |
CNN encoder, MLP decoder |
|
MQ-RNN [Wen et al. 2017] |
Global |
Univariate |
RNN encoder, MLP encoder |
|
N-BEATS [Oreshkin et al. 2019] |
Global |
Univariate |
MLP, residual links |
|
Rotbaum [Hasson et al. 2021] |
Global |
Univariate |
XGBoost, Quantile Regression Forests, LightGBM, Level Set Forecaster |
|
Causal Convolutional Transformer [Li et al. 2019] |
Global |
Univariate |
Causal convolution, self attention |
|
Temporal Fusion Transformer [Lim et al. 2021] |
Global |
Univariate |
LSTM, self attention |
|
Transformer [Vaswani et al. 2017] |
Global |
Univariate |
MLP, multi-head attention |
|
WaveNet [van den Oord et al. 2016] |
Global |
Univariate |
Dilated convolution |
|
SimpleFeedForward |
Global |
Univariate |
MLP |
|
DeepVAR [Salinas et al. 2019] |
Global |
Multivariate |
RNN |
|
GPVAR [Salinas et al. 2019] |
Global |
Multivariate |
RNN, Gaussian process |
|
LSTNet [Lai et al. 2018] |
Global |
Multivariate |
LSTM |
|
DeepTPP [Shchur et al. 2020] |
Global |
Multivariate events |
RNN, temporal point process |
|
RForecast [Hyndman et al. 2008] |
Local |
Univariate |
ARIMA, ETS, Croston, TBATS |
|
Prophet [Taylor et al. 2017] |
Local |
Univariate |
- |
|
NaiveSeasonal [Hyndman et al. 2018] |
Local |
Univariate |
- |
|
Naive2 [Makridakis et al. 1998] |
Local |
Univariate |
- |
|
NPTS |
Local |
Univariate |
- |