Available models#

Model

Local/global

Data layout

Architecture/method

Implementation

DeepAR [Salinas et al. 2020]

Global

Univariate

RNN

MXNet, PyTorch

DeepState [Rangapuram et al. 2018]

Global

Univariate

RNN, state-space model

MXNet

DeepFactor [Wang et al. 2019]

Global

Univariate

RNN, state-space model, Gaussian process

MXNet

Deep Renewal Processes [Türkmen et al. 2021]

Global

Univariate

RNN

MXNet

GPForecaster

Global

Univariate

MLP, Gaussian process

MXNet

MQ-CNN [Wen et al. 2017]

Global

Univariate

CNN encoder, MLP decoder

MXNet

MQ-RNN [Wen et al. 2017]

Global

Univariate

RNN encoder, MLP encoder

MXNet

N-BEATS [Oreshkin et al. 2019]

Global

Univariate

MLP, residual links

MXNet

Rotbaum [Hasson et al. 2021]

Global

Univariate

XGBoost, Quantile Regression Forests, LightGBM, Level Set Forecaster

Numpy

Causal Convolutional Transformer [Li et al. 2019]

Global

Univariate

Causal convolution, self attention

MXNet

Temporal Fusion Transformer [Lim et al. 2021]

Global

Univariate

LSTM, self attention

MXNet

Transformer [Vaswani et al. 2017]

Global

Univariate

MLP, multi-head attention

MXNet

WaveNet [van den Oord et al. 2016]

Global

Univariate

Dilated convolution

MXNet

SimpleFeedForward

Global

Univariate

MLP

MXNet, PyTorch

DeepVAR [Salinas et al. 2019]

Global

Multivariate

RNN

MXNet

GPVAR [Salinas et al. 2019]

Global

Multivariate

RNN, Gaussian process

MXNet

LSTNet [Lai et al. 2018]

Global

Multivariate

LSTM

MXNet

DeepTPP [Shchur et al. 2020]

Global

Multivariate events

RNN, temporal point process

MXNet

RForecast [Hyndman et al. 2008]

Local

Univariate

ARIMA, ETS, Croston, TBATS

Wrapped R package

Prophet [Taylor et al. 2017]

Local

Univariate

-

Wrapped Python package

NaiveSeasonal [Hyndman et al. 2018]

Local

Univariate

-

Numpy

Naive2 [Makridakis et al. 1998]

Local

Univariate

-

Numpy

NPTS

Local

Univariate

-

Numpy