Source code for gluonts.torch.modules.distribution_output

# Copyright 2018, Inc. or its affiliates. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
# or in the "license" file accompanying this file. This file is distributed
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.

from typing import Callable, Dict, Optional, Tuple

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import (

from gluonts.core.component import DType, validated

from .lambda_layer import LambdaLayer

[docs]class PtArgProj(nn.Module): r""" A PyTorch module that can be used to project from a dense layer to PyTorch distribution arguments. Parameters ---------- in_features Size of the incoming features. dim_args Dictionary with string key and int value dimension of each arguments that will be passed to the domain map, the names are not used. domain_map Function returning a tuple containing one tensor a function or a nn.Module. This will be called with num_args arguments and should return a tuple of outputs that will be used when calling the distribution constructor. """ def __init__( self, in_features: int, args_dim: Dict[str, int], domain_map: Callable[..., Tuple[torch.Tensor]], **kwargs, ) -> None: super().__init__(**kwargs) self.args_dim = args_dim self.proj = nn.ModuleList( [nn.Linear(in_features, dim) for dim in args_dim.values()] ) self.domain_map = domain_map
[docs] def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor]: params_unbounded = [proj(x) for proj in self.proj] return self.domain_map(*params_unbounded)
[docs]class Output: r""" Class to connect a network to some output """ in_features: int args_dim: Dict[str, int] _dtype: DType = np.float32 @property def dtype(self): return self._dtype @dtype.setter def dtype(self, dtype: DType): self._dtype = dtype
[docs] def get_args_proj(self, in_features: int) -> nn.Module: return PtArgProj( in_features=in_features, args_dim=self.args_dim, domain_map=LambdaLayer(self.domain_map), )
[docs] def domain_map(self, *args: torch.Tensor): raise NotImplementedError()
[docs]class DistributionOutput(Output): r""" Class to construct a distribution given the output of a network. """ distr_cls: type @validated() def __init__(self) -> None: pass
[docs] def distribution( self, distr_args, loc: Optional[torch.Tensor] = None, scale: Optional[torch.Tensor] = None, ) -> Distribution: r""" Construct the associated distribution, given the collection of constructor arguments and, optionally, a scale tensor. Parameters ---------- distr_args Constructor arguments for the underlying Distribution type. loc Optional tensor, of the same shape as the batch_shape+event_shape of the resulting distribution. scale Optional tensor, of the same shape as the batch_shape+event_shape of the resulting distribution. """ if loc is None and scale is None: return self.distr_cls(*distr_args) else: distr = self.distr_cls(*distr_args) return TransformedDistribution( distr, [ AffineTransform( loc=0.0 if loc is None else loc, scale=1.0 if scale is None else scale, ) ], )
@property def event_shape(self) -> Tuple: r""" Shape of each individual event contemplated by the distributions that this object constructs. """ raise NotImplementedError() @property def event_dim(self) -> int: r""" Number of event dimensions, i.e., length of the `event_shape` tuple, of the distributions that this object constructs. """ return len(self.event_shape) @property def value_in_support(self) -> float: r""" A float that will have a valid numeric value when computing the log-loss of the corresponding distribution. By default 0.0. This value will be used when padding data series. """ return 0.0
[docs] def domain_map(self, *args: torch.Tensor): r""" Converts arguments to the right shape and domain. The domain depends on the type of distribution, while the correct shape is obtained by reshaping the trailing axis in such a way that the returned tensors define a distribution of the right event_shape. """ raise NotImplementedError()
[docs]class NormalOutput(DistributionOutput): args_dim: Dict[str, int] = {"loc": 1, "scale": 1} distr_cls: type = Normal
[docs] @classmethod def domain_map(cls, loc: torch.Tensor, scale: torch.Tensor): scale = F.softplus(scale) return loc.squeeze(-1), scale.squeeze(-1)
@property def event_shape(self) -> Tuple: return ()
[docs]class StudentTOutput(DistributionOutput): args_dim: Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} distr_cls: type = StudentT
[docs] @classmethod def domain_map( cls, df: torch.Tensor, loc: torch.Tensor, scale: torch.Tensor ): scale = F.softplus(scale) df = 2.0 + F.softplus(df) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1)
@property def event_shape(self) -> Tuple: return ()
[docs]class BetaOutput(DistributionOutput): args_dim: Dict[str, int] = {"concentration1": 1, "concentration0": 1} distr_cls: type = Beta
[docs] @classmethod def domain_map( cls, concentration1: torch.Tensor, concentration0: torch.Tensor ): epsilon = np.finfo(cls._dtype).eps # machine epsilon concentration1 = F.softplus(concentration1) + epsilon concentration0 = F.softplus(concentration0) + epsilon return concentration1.squeeze(dim=-1), concentration0.squeeze(dim=-1)
@property def event_shape(self) -> Tuple: return () @property def value_in_support(self) -> float: return 0.5
[docs]class GammaOutput(DistributionOutput): args_dim: Dict[str, int] = {"concentration": 1, "rate": 1} distr_cls: type = Gamma
[docs] @classmethod def domain_map(cls, concentration: torch.Tensor, rate: torch.Tensor): epsilon = np.finfo(cls._dtype).eps # machine epsilon concentration = F.softplus(concentration) + epsilon rate = F.softplus(rate) + epsilon return concentration.squeeze(dim=-1), rate.squeeze(dim=-1)
@property def event_shape(self) -> Tuple: return () @property def value_in_support(self) -> float: return 0.5
[docs]class PoissonOutput(DistributionOutput): args_dim: Dict[str, int] = {"rate": 1} distr_cls: type = Poisson
[docs] @classmethod def domain_map(cls, rate: torch.Tensor): rate_pos = F.softplus(rate).clone() return (rate_pos.squeeze(-1),)
@property def event_shape(self) -> Tuple: return ()
[docs]class NegativeBinomialOutput(DistributionOutput): args_dim: Dict[str, int] = {"total_count": 1, "logits": 1} distr_cls: type = NegativeBinomial
[docs] @classmethod def domain_map(cls, total_count: torch.Tensor, logits: torch.Tensor): total_count = F.softplus(total_count) return total_count.squeeze(-1), logits.squeeze(-1)
@property def event_shape(self) -> Tuple: return ()