gluonts.model.deepar package¶
-
class
gluonts.model.deepar.
DeepAREstimator
(freq: str, prediction_length: int, trainer: gluonts.mx.trainer._base.Trainer = gluonts.mx.trainer._base.Trainer(avg_strategy=gluonts.mx.trainer.model_averaging.SelectNBestMean(maximize=False, metric="score", num_models=1), batch_size=None, clip_gradient=10.0, ctx=None, epochs=100, hybridize=True, init="xavier", learning_rate=0.001, learning_rate_decay_factor=0.5, minimum_learning_rate=5e-05, num_batches_per_epoch=50, patience=10, post_initialize_cb=None, weight_decay=1e-08), context_length: Optional[int] = None, num_layers: int = 2, num_cells: int = 40, cell_type: str = 'lstm', dropoutcell_type: str = 'ZoneoutCell', dropout_rate: float = 0.1, use_feat_dynamic_real: bool = False, use_feat_static_cat: bool = False, use_feat_static_real: bool = False, cardinality: Optional[List[int]] = None, embedding_dimension: Optional[List[int]] = None, distr_output: gluonts.mx.distribution.distribution_output.DistributionOutput = gluonts.mx.distribution.student_t.StudentTOutput(), scaling: bool = True, lags_seq: Optional[List[int]] = None, time_features: Optional[List[gluonts.time_feature._base.TimeFeature]] = None, num_parallel_samples: int = 100, imputation_method: Optional[gluonts.transform.feature.MissingValueImputation] = None, train_sampler: Optional[gluonts.transform.sampler.InstanceSampler] = None, validation_sampler: Optional[gluonts.transform.sampler.InstanceSampler] = None, dtype: gluonts.core.component.DType = <class 'numpy.float32'>, alpha: float = 0.0, beta: float = 0.0, batch_size: int = 32)[source]¶ Bases:
gluonts.mx.model.estimator.GluonEstimator
Construct a DeepAR estimator.
This implements an RNN-based model, close to the one described in [SFG17].
Note: the code of this model is unrelated to the implementation behind SageMaker’s DeepAR Forecasting Algorithm.
- Parameters
freq – Frequency of the data to train on and predict
prediction_length – Length of the prediction horizon
trainer – Trainer object to be used (default: Trainer())
context_length – Number of steps to unroll the RNN for before computing predictions (default: None, in which case context_length = prediction_length)
num_layers – Number of RNN layers (default: 2)
num_cells – Number of RNN cells for each layer (default: 40)
cell_type – Type of recurrent cells to use (available: ‘lstm’ or ‘gru’; default: ‘lstm’)
dropoutcell_type – Type of dropout cells to use (available: ‘ZoneoutCell’, ‘RNNZoneoutCell’, ‘VariationalDropoutCell’ or ‘VariationalZoneoutCell’; default: ‘ZoneoutCell’)
dropout_rate – Dropout regularization parameter (default: 0.1)
use_feat_dynamic_real – Whether to use the
feat_dynamic_real
field from the data (default: False)use_feat_static_cat – Whether to use the
feat_static_cat
field from the data (default: False)use_feat_static_real – Whether to use the
feat_static_real
field from the data (default: False)cardinality – Number of values of each categorical feature. This must be set if
use_feat_static_cat == True
(default: None)embedding_dimension – Dimension of the embeddings for categorical features (default: [min(50, (cat+1)//2) for cat in cardinality])
distr_output – Distribution to use to evaluate observations and sample predictions (default: StudentTOutput())
scaling – Whether to automatically scale the target values (default: true)
lags_seq – Indices of the lagged target values to use as inputs of the RNN (default: None, in which case these are automatically determined based on freq)
time_features – Time features to use as inputs of the RNN (default: None, in which case these are automatically determined based on freq)
num_parallel_samples – Number of evaluation samples per time series to increase parallelism during inference. This is a model optimization that does not affect the accuracy (default: 100)
imputation_method – One of the methods from ImputationStrategy
train_sampler – Controls the sampling of windows during training.
validation_sampler – Controls the sampling of windows during validation.
alpha – The scaling coefficient of the activation regularization
beta – The scaling coefficient of the temporal activation regularization
batch_size – The size of the batches to be used training and prediction.
-
create_predictor
(transformation: gluonts.transform._base.Transformation, trained_network: mxnet.gluon.block.HybridBlock) → gluonts.model.predictor.Predictor[source]¶ Create and return a predictor object.
- Returns
A predictor wrapping a HybridBlock used for inference.
- Return type
-
create_training_data_loader
(data: Iterable[Dict[str, Any]], **kwargs) → gluonts.dataset.loader.DataLoader[source]¶
-
create_training_network
() → gluonts.model.deepar._network.DeepARTrainingNetwork[source]¶ Create and return the network used for training (i.e., computing the loss).
- Returns
The network that computes the loss given input data.
- Return type
HybridBlock
-
create_transformation
() → gluonts.transform._base.Transformation[source]¶ Create and return the transformation needed for training and inference.
- Returns
The transformation that will be applied entry-wise to datasets, at training and inference time.
- Return type
-
create_validation_data_loader
(data: Iterable[Dict[str, Any]], **kwargs) → gluonts.dataset.loader.DataLoader[source]¶
-
freq
= None¶
-
lead_time
= None¶
-
prediction_length
= None¶