gluonts.model.estimator module¶
-
class
gluonts.model.estimator.
DummyEstimator
(predictor_cls: type, **kwargs)[source]¶ Bases:
gluonts.model.estimator.Estimator
An Estimator that, upon training, simply returns a pre-constructed Predictor.
- Parameters
predictor_cls – Predictor class to instantiate.
**kwargs – Keyword arguments to pass to the predictor constructor.
-
freq
= None¶
-
lead_time
= None¶
-
prediction_length
= None¶
-
train
(training_data: Iterable[Dict[str, Any]], validation_dataset: Optional[Iterable[Dict[str, Any]]] = None) → gluonts.model.predictor.Predictor[source]¶ Train the estimator on the given data.
- Parameters
training_data – Dataset to train the model on.
validation_data – Dataset to validate the model on during training.
- Returns
The predictor containing the trained model.
- Return type
-
class
gluonts.model.estimator.
Estimator
(lead_time: int = 0, **kwargs)[source]¶ Bases:
object
An abstract class representing a trainable model.
The underlying model is trained by calling the train method with a training Dataset, producing a Predictor object.
-
freq
: str = None¶
-
lead_time
: int = None¶
-
prediction_length
: int = None¶
-
train
(training_data: Iterable[Dict[str, Any]], validation_data: Optional[Iterable[Dict[str, Any]]] = None) → gluonts.model.predictor.Predictor[source]¶ Train the estimator on the given data.
- Parameters
training_data – Dataset to train the model on.
validation_data – Dataset to validate the model on during training.
- Returns
The predictor containing the trained model.
- Return type
-