gluonts.mx.distribution.transformed_distribution module¶
-
class
gluonts.mx.distribution.transformed_distribution.
AffineTransformedDistribution
(base_distribution: gluonts.mx.distribution.distribution.Distribution, loc: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol, None] = None, scale: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol, None] = None)[source]¶ Bases:
gluonts.mx.distribution.transformed_distribution.TransformedDistribution
-
arg_names
= None¶
-
property
mean
¶ Tensor containing the mean of the distribution.
-
property
stddev
¶ Tensor containing the standard deviation of the distribution.
-
property
variance
¶ Tensor containing the variance of the distribution.
-
-
class
gluonts.mx.distribution.transformed_distribution.
TransformedDistribution
(base_distribution: gluonts.mx.distribution.distribution.Distribution, transforms: List[gluonts.mx.distribution.bijection.Bijection])[source]¶ Bases:
gluonts.mx.distribution.distribution.Distribution
A distribution obtained by applying a sequence of transformations on top of a base distribution.
-
property
F
¶
-
arg_names
= None¶
-
property
batch_shape
¶ Layout of the set of events contemplated by the distribution.
Invoking sample() from a distribution yields a tensor of shape batch_shape + event_shape, and computing log_prob (or loss more in general) on such sample will yield a tensor of shape batch_shape.
This property is available in general only in mx.ndarray mode, when the shape of the distribution arguments can be accessed.
-
cdf
(y: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]) → Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol][source]¶ Returns the value of the cumulative distribution function evaluated at x
-
property
event_dim
¶ Number of event dimensions, i.e., length of the event_shape tuple.
This is 0 for distributions over scalars, 1 over vectors, 2 over matrices, and so on.
-
property
event_shape
¶ Shape of each individual event contemplated by the distribution.
For example, distributions over scalars have event_shape = (), over vectors have event_shape = (d, ) where d is the length of the vectors, over matrices have event_shape = (d1, d2), and so on.
Invoking sample() from a distribution yields a tensor of shape batch_shape + event_shape.
This property is available in general only in mx.ndarray mode, when the shape of the distribution arguments can be accessed.
-
log_prob
(y: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]) → Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol][source]¶ Compute the log-density of the distribution at x.
- Parameters
x – Tensor of shape (*batch_shape, *event_shape).
- Returns
Tensor of shape batch_shape containing the log-density of the distribution for each event in x.
- Return type
Tensor
-
quantile
(level: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]) → Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol][source]¶ Calculates quantiles for the given levels.
- Parameters
level – Level values to use for computing the quantiles. level should be a 1d tensor of level values between 0 and 1.
- Returns
Quantile values corresponding to the levels passed. The return shape is
(num_levels, …DISTRIBUTION_SHAPE…),
where DISTRIBUTION_SHAPE is the shape of the underlying distribution.
- Return type
quantiles
-
sample
(num_samples: Optional[int] = None, dtype=<class 'numpy.float32'>) → Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol][source]¶ Draw samples from the distribution.
If num_samples is given the first dimension of the output will be num_samples.
- Parameters
num_samples – Number of samples to to be drawn.
dtype – Data-type of the samples.
- Returns
A tensor containing samples. This has shape (*batch_shape, *eval_shape) if num_samples = None and (num_samples, *batch_shape, *eval_shape) otherwise.
- Return type
Tensor
-
sample_rep
(num_samples: Optional[int] = None, dtype=<class 'float'>) → Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol][source]¶
-
property
support_min_max
¶
-
property