gluonts.mx.distribution.lowrank_gp module#
- class gluonts.mx.distribution.lowrank_gp.GPArgProj(rank: int, sigma_init: float = 1.0, sigma_minimum: float = 0.001, mu_ratio: float = 1.0, dropout_rate: float = 0.0, prefix: Optional[str] = None)[source]#
Bases:
mxnet.gluon.block.HybridBlock
- hybrid_forward(F, x: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]) Tuple[Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]] [source]#
- Parameters
F –
x ((..., dim, hidden_dim)) –
- Returns
Returns (mu, D, W) where shapes are (…, dim), (…, dim),
(…, dim, rank)
- class gluonts.mx.distribution.lowrank_gp.LowrankGPOutput(rank: int, dim: Optional[int] = None, sigma_init: float = 1.0, mu_ratio: float = 1.0, dropout_rate: float = 0.0)[source]#
Bases:
gluonts.mx.distribution.distribution_output.DistributionOutput
- args_dim: Dict[str, int]#
- distr_cls: type#
- distribution(distr_args, loc=None, scale=None, dim=None)[source]#
Construct the associated distribution, given the collection of constructor arguments and, optionally, a scale tensor.
- Parameters
distr_args – Constructor arguments for the underlying Distribution type.
loc – Optional tensor, of the same shape as the batch_shape+event_shape of the resulting distribution.
scale – Optional tensor, of the same shape as the batch_shape+event_shape of the resulting distribution.
- property event_dim: int#
Number of event dimensions, i.e., length of the event_shape tuple, of the distributions that this object constructs.
- property event_shape: Tuple#
Shape of each individual event contemplated by the distributions that this object constructs.
- get_args_proj(prefix: Optional[str] = None) gluonts.mx.distribution.distribution_output.ArgProj [source]#