Source code for gluonts.model.prophet._predictor

# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.

from typing import Callable, Dict, Iterator, List, NamedTuple, Optional

import numpy as np
import pandas as pd
import toolz

from gluonts.core.component import validated
from gluonts.dataset.common import DataEntry, Dataset
from gluonts.model.forecast import SampleForecast
from gluonts.model.predictor import RepresentablePredictor

try:
    from prophet import Prophet
except ImportError:
    Prophet = None

PROPHET_IS_INSTALLED = Prophet is not None

USAGE_MESSAGE = """
Cannot import `prophet`.

The `ProphetPredictor` is a thin wrapper for calling the `prophet` package.
In order to use it you need to install it using one of the following two
methods:

    # 1) install prophet directly
    pip install prophet

    # 2) install gluonts with the Prophet extras
    pip install gluonts[Prophet]
"""


def feat_name(i: int) -> str:
    """
    The canonical name of a feature with index `i`.
    """
    return f"feat_dynamic_real_{i:03d}"


class ProphetDataEntry(NamedTuple):
    """
    A named tuple containing relevant base and derived data that is required in
    order to call Prophet.
    """

    train_length: int
    prediction_length: int
    start: pd.Period
    target: np.ndarray
    feat_dynamic_real: List[np.ndarray]

    @property
    def prophet_training_data(self) -> pd.DataFrame:
        return pd.DataFrame(
            data={
                **{
                    "ds": pd.period_range(
                        start=self.start,
                        periods=self.train_length,
                        freq=self.start.freq,
                    ).to_timestamp(),
                    "y": self.target,
                },
                **{
                    feat_name(i): feature[: self.train_length]
                    for i, feature in enumerate(self.feat_dynamic_real)
                },
            }
        )

    @property
    def forecast_start(self) -> pd.Period:
        return self.start + self.train_length * self.start.freq

    @property
    def freq(self):
        return self.start.freq


[docs]class ProphetPredictor(RepresentablePredictor): """ Wrapper around `Prophet <https://github.com/facebook/prophet>`_. The `ProphetPredictor` is a thin wrapper for calling the `prophet` package. In order to use it you need to install the package:: # you can either install Prophet directly pip install prophet # or install gluonts with the Prophet extras pip install gluonts[Prophet] Parameters ---------- prediction_length Number of time points to predict prophet_params Parameters to pass when instantiating the prophet model. init_model An optional function that will be called with the configured model. This can be used to configure more complex setups, e.g. >>> def configure_model(model): ... model.add_seasonality( ... name='weekly', period=7, fourier_order=3, prior_scale=0.1 ... ) ... return model """ @validated() def __init__( self, prediction_length: int, prophet_params: Optional[Dict] = None, init_model: Callable = toolz.identity, ) -> None: super().__init__(prediction_length=prediction_length) if not PROPHET_IS_INSTALLED: raise ImportError(USAGE_MESSAGE) if prophet_params is None: prophet_params = {} assert "uncertainty_samples" not in prophet_params, ( "Parameter 'uncertainty_samples' should not be set directly. " "Please use 'num_samples' in the 'predict' method instead." ) self.prophet_params = prophet_params self.init_model = init_model
[docs] def predict( self, dataset: Dataset, num_samples: int = 100, **kwargs ) -> Iterator[SampleForecast]: params = self.prophet_params.copy() params.update(uncertainty_samples=num_samples) for entry in dataset: data = self._make_prophet_data_entry(entry) forecast_samples = self._run_prophet(data, params) yield SampleForecast( samples=forecast_samples, start_date=data.forecast_start, )
def _run_prophet(self, data: ProphetDataEntry, params: dict) -> np.ndarray: """ Construct and run a :class:`Prophet` model on the given :class:`ProphetDataEntry` and return the resulting array of samples. """ prophet = self.init_model(Prophet(**params)) # Register dynamic features as regressors to the model for i in range(len(data.feat_dynamic_real)): prophet.add_regressor(feat_name(i)) prophet.fit(data.prophet_training_data) future_df = prophet.make_future_dataframe( periods=self.prediction_length, freq=data.freq, include_history=False, ) # Add dynamic features in the prediction range for i, feature in enumerate(data.feat_dynamic_real): future_df[feat_name(i)] = feature[data.train_length :] prophet_result = prophet.predictive_samples(future_df) return prophet_result["yhat"].T def _make_prophet_data_entry(self, entry: DataEntry) -> ProphetDataEntry: """ Construct a :class:`ProphetDataEntry` from a regular :class:`DataEntry`. """ train_length = len(entry["target"]) prediction_length = self.prediction_length start = entry["start"] target = entry["target"] feat_dynamic_real = entry.get("feat_dynamic_real", []) # make sure each dynamic feature has the desired length for i, feature in enumerate(feat_dynamic_real): assert len(feature) == train_length + prediction_length, ( f"Length mismatch for dynamic real-valued feature #{i}: " f"expected {train_length + prediction_length}, " f"got {len(feature)}" ) return ProphetDataEntry( train_length=train_length, prediction_length=prediction_length, start=start, target=target, feat_dynamic_real=feat_dynamic_real, )