gluonts.mx.block.encoder module#
- class gluonts.mx.block.encoder.HierarchicalCausalConv1DEncoder(dilation_seq: List[int], kernel_size_seq: List[int], channels_seq: List[int], use_residual: bool = False, use_static_feat: bool = False, use_dynamic_feat: bool = False, **kwargs)[source]#
Bases:
gluonts.mx.block.encoder.Seq2SeqEncoder
Defines a stack of dilated convolutions as the encoder.
See the following paper for details: 1. Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.W. and Kavukcuoglu, K., 2016, September. WaveNet: A generative model for raw audio. In SSW (p. 125).
- Parameters
dilation_seq – dilation for each convolution in the stack.
kernel_size_seq – kernel size for each convolution in the stack.
channels_seq – number of channels for each convolution in the stack.
use_residual – flag to toggle using residual connections.
use_static_feat – flag to toggle whether to use use_static_feat as input to the encoder
use_dynamic_feat – flag to toggle whether to use use_dynamic_feat as input to the encoder
- hybrid_forward(F, target: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], static_features: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], dynamic_features: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]) Tuple[Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]] [source]#
- Parameters
F – A module that can either refer to the Symbol API or the NDArray API in MXNet.
target – target time series, shape (batch_size, sequence_length, 1)
static_features – static features, shape (batch_size, num_feat_static)
dynamic_features – dynamic_features, shape (batch_size, sequence_length, num_feat_dynamic)
- Returns
Tensor – static code, shape (batch_size, channel_seqs + (1) if use_residual)
Tensor – dynamic code, shape (batch_size, sequence_length, channel_seqs + (1) if use_residual)
- class gluonts.mx.block.encoder.MLPEncoder(layer_sizes: List[int], **kwargs)[source]#
Bases:
gluonts.mx.block.encoder.Seq2SeqEncoder
Defines a multilayer perceptron used as an encoder.
- Parameters
layer_sizes – number of hidden units per layer.
kwargs –
- hybrid_forward(F, target: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], static_features: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], dynamic_features: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]) Tuple[Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]] [source]#
- Parameters
F – A module that can either refer to the Symbol API or the NDArray API in MXNet.
target – target time series, shape (batch_size, sequence_length)
static_features – static features, shape (batch_size, num_feat_static)
dynamic_features – dynamic_features, shape (batch_size, sequence_length, num_feat_dynamic)
- Returns
Tensor – static code, shape (batch_size, num_feat_static)
Tensor – dynamic code, shape (batch_size, sequence_length, num_feat_dynamic)
- class gluonts.mx.block.encoder.RNNCovariateEncoder(use_static_feat: bool = True, use_dynamic_feat: bool = True, **kwargs)[source]#
Bases:
gluonts.mx.block.encoder.RNNEncoder
Deprecated class only for compatibility; use RNNEncoder instead.
- class gluonts.mx.block.encoder.RNNEncoder(mode: str, hidden_size: int, num_layers: int, bidirectional: bool, use_static_feat: bool = False, use_dynamic_feat: bool = False, **kwargs)[source]#
Bases:
gluonts.mx.block.encoder.Seq2SeqEncoder
Defines RNN encoder that uses covariates and target as input to the RNN if desired.
- Parameters
mode – type of the RNN. Can be either: rnn_relu (RNN with relu activation), rnn_tanh, (RNN with tanh activation), lstm or gru.
hidden_size – number of units per hidden layer.
num_layers – number of hidden layers.
bidirectional – toggle use of bi-directional RNN as encoder.
use_static_feat – flag to toggle whether to use use_static_feat as input to the encoder
use_dynamic_feat – flag to toggle whether to use use_dynamic_feat as input to the encoder
- hybrid_forward(F, target: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], static_features: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], dynamic_features: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]) Tuple[Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]] [source]#
- Parameters
F – A module that can either refer to the Symbol API or the NDArray API in MXNet.
target – target time series, shape (batch_size, sequence_length, 1)
static_features – static features, shape (batch_size, num_feat_static)
dynamic_features – dynamic_features, shape (batch_size, sequence_length, num_feat_dynamic)
- Returns
Tensor – static code, shape (batch_size, num_feat_static)
Tensor – dynamic code, shape (batch_size, sequence_length, num_feat_dynamic)
- class gluonts.mx.block.encoder.Seq2SeqEncoder(prefix=None, params=None)[source]#
Bases:
mxnet.gluon.block.HybridBlock
Abstract class for the encoder.
An encoder takes a target sequence with corresponding covariates and maps it into a static latent and a dynamic latent code with the same length as the target sequence.
- hybrid_forward(F, target: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], static_features: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], dynamic_features: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]) Tuple[Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]] [source]#
- Parameters
F – A module that can either refer to the Symbol API or the NDArray API in MXNet.
target – target time series, shape (batch_size, sequence_length)
static_features – static features, shape (batch_size, num_feat_static)
dynamic_features – dynamic_features, shape (batch_size, sequence_length, num_feat_dynamic)
- Returns
Tensor – static code, shape (batch_size, num_feat_static)
Tensor – dynamic code, shape (batch_size, sequence_length, num_feat_dynamic)