gluonts.torch.model.tide.estimator module#
- class gluonts.torch.model.tide.estimator.TiDEEstimator(freq: str, prediction_length: int, context_length: Optional[int] = None, feat_proj_hidden_dim: Optional[int] = None, encoder_hidden_dim: Optional[int] = None, decoder_hidden_dim: Optional[int] = None, temporal_hidden_dim: Optional[int] = None, distr_hidden_dim: Optional[int] = None, num_layers_encoder: Optional[int] = None, num_layers_decoder: Optional[int] = None, decoder_output_dim: Optional[int] = None, dropout_rate: Optional[float] = None, num_feat_dynamic_proj: Optional[int] = None, num_feat_dynamic_real: int = 0, num_feat_static_real: int = 0, num_feat_static_cat: int = 0, cardinality: Optional[List[int]] = None, embedding_dimension: Optional[List[int]] = None, layer_norm: bool = False, lr: float = 0.001, weight_decay: float = 1e-08, patience: int = 10, scaling: Optional[str] = 'mean', distr_output: gluonts.torch.distributions.output.Output = gluonts.torch.distributions.studentT.StudentTOutput(beta=0.0), batch_size: int = 32, num_batches_per_epoch: int = 50, trainer_kwargs: Optional[Dict[str, Any]] = None, train_sampler: Optional[gluonts.transform.sampler.InstanceSampler] = None, validation_sampler: Optional[gluonts.transform.sampler.InstanceSampler] = None)[source]#
Bases:
gluonts.torch.model.estimator.PyTorchLightningEstimator
An estimator training the TiDE model form the paper https://arxiv.org/abs/2304.08424 extended for probabilistic forecasting.
This class is uses the model defined in
TiDEModel
, and wraps it into aTiDELightningModule
for training purposes: training is performed using PyTorch Lightning’spl.Trainer
class.- Parameters
freq – Frequency of the data to train on and predict.
prediction_length (int) – Length of the prediction horizon.
context_length – Number of time steps prior to prediction time that the model takes as inputs (default:
prediction_length
).feat_proj_hidden_dim – Size of the feature projection layer (default: 4).
encoder_hidden_dim – Size of the dense encoder layer (default: 4).
decoder_hidden_dim – Size of the dense decoder layer (default: 4).
temporal_hidden_dim – Size of the temporal decoder layer (default: 4).
distr_hidden_dim – Size of the distribution projection layer (default: 4).
num_layers_encoder – Number of layers in dense encoder (default: 1).
num_layers_decoder – Number of layers in dense decoder (default: 1).
decoder_output_dim – Output size of dense decoder (default: 4).
dropout_rate – Dropout regularization parameter (default: 0.3).
num_feat_dynamic_proj – Output size of feature projection layer (default: 2).
num_feat_dynamic_real – Number of dynamic real features in the data (default: 0).
num_feat_static_real – Number of static real features in the data (default: 0).
num_feat_static_cat – Number of static categorical features in the data (default: 0).
cardinality – Number of values of each categorical feature. This must be set if
num_feat_static_cat > 0
(default: None).embedding_dimension – Dimension of the embeddings for categorical features (default:
[16 for cat in cardinality]
).layer_norm – Enable layer normalization or not (default: False).
lr – Learning rate (default:
1e-3
).weight_decay – Weight decay regularization parameter (default:
1e-8
).patience – Patience parameter for learning rate scheduler (default: 10).
distr_output – Distribution to use to evaluate observations and sample predictions (default: StudentTOutput()).
scaling – Which scaling method to use to scale the target values (default: mean).
batch_size – The size of the batches to be used for training (default: 32).
num_batches_per_epoch – Number of batches to be processed in each training epoch (default: 50).
trainer_kwargs – Additional arguments to provide to
pl.Trainer
for construction.train_sampler – Controls the sampling of windows during training.
validation_sampler – Controls the sampling of windows during validation.
- create_lightning_module() lightning.pytorch.core.module.LightningModule [source]#
Create and return the network used for training (i.e., computing the loss).
- Returns
The network that computes the loss given input data.
- Return type
pl.LightningModule
- create_predictor(transformation: gluonts.transform._base.Transformation, module) gluonts.torch.model.predictor.PyTorchPredictor [source]#
Create and return a predictor object.
- Parameters
transformation – Transformation to be applied to data before it goes into the model.
module – A trained pl.LightningModule object.
- Returns
A predictor wrapping a nn.Module used for inference.
- Return type
- create_training_data_loader(data: gluonts.dataset.Dataset, module: gluonts.torch.model.tide.lightning_module.TiDELightningModule, shuffle_buffer_length: Optional[int] = None, **kwargs) Iterable [source]#
Create a data loader for training purposes.
- Parameters
data – Dataset from which to create the data loader.
module – The pl.LightningModule object that will receive the batches from the data loader.
- Returns
The data loader, i.e. and iterable over batches of data.
- Return type
Iterable
- create_transformation() gluonts.transform._base.Transformation [source]#
Create and return the transformation needed for training and inference.
- Returns
The transformation that will be applied entry-wise to datasets, at training and inference time.
- Return type
- create_validation_data_loader(data: gluonts.dataset.Dataset, module: gluonts.torch.model.tide.lightning_module.TiDELightningModule, **kwargs) Iterable [source]#
Create a data loader for validation purposes.
- Parameters
data – Dataset from which to create the data loader.
module – The pl.LightningModule object that will receive the batches from the data loader.
- Returns
The data loader, i.e. and iterable over batches of data.
- Return type
Iterable
- lead_time: int#
- prediction_length: int#