gluonts.mx.representation.binning_helpers module#

class gluonts.mx.representation.binning_helpers.Digitize[source]#

Bases: mxnet.operator.CustomOp

backward(req, out_grad, in_data, out_data, in_grad, aux)[source]#

Backward interface. Can override when creating new operators.

Parameters
  • req (list of str) – how to assign to in_grad. can be ‘null’, ‘write’, or ‘add’. You can optionally use self.assign(dst, req, src) to handle this.

  • out_grad (list of NDArrays) – input and output for backward. See document for corresponding arguments of Operator::Backward

  • in_data (list of NDArrays) – input and output for backward. See document for corresponding arguments of Operator::Backward

  • out_data (list of NDArrays) – input and output for backward. See document for corresponding arguments of Operator::Backward

  • in_grad (list of NDArrays) – input and output for backward. See document for corresponding arguments of Operator::Backward

  • aux (list of NDArrays) – input and output for backward. See document for corresponding arguments of Operator::Backward

forward(is_train, req, in_data, out_data, aux)[source]#

Forward interface. Can override when creating new operators.

Parameters
  • is_train (bool) – whether this is for training

  • req (list of str) – how to assign to out_data. can be ‘null’, ‘write’, or ‘add’. You can optionally use self.assign(dst, req, src) to handle this.

  • in_data (list of NDArrays) – input, output, and auxiliary states for forward. See document for corresponding arguments of Operator::Forward

  • out_data (list of NDArrays) – input, output, and auxiliary states for forward. See document for corresponding arguments of Operator::Forward

  • aux (list of NDArrays) – input, output, and auxiliary states for forward. See document for corresponding arguments of Operator::Forward

class gluonts.mx.representation.binning_helpers.DigitizeProp[source]#

Bases: mxnet.operator.CustomOpProp

create_operator(ctx, in_shapes, in_dtypes)[source]#

Create an operator that carries out the real computation given the context, input shapes, and input data types.

infer_shape(in_shapes)[source]#

infer_shape interface. Can override when creating new operators.

Parameters

in_shape (list) – List of argument shapes in the same order as declared in list_arguments.

Returns

  • in_shape (list) – List of argument shapes. Can be modified from in_shape.

  • out_shape (list) – List of output shapes calculated from in_shape, in the same order as declared in list_outputs.

  • aux_shape (Optional, list) – List of aux shapes calculated from in_shape, in the same order as declared in list_auxiliary_states.

list_arguments()[source]#

list_arguments interface. Can override when creating new operators.

Returns

arguments – List of argument blob names.

Return type

list

list_outputs()[source]#

list_outputs interface. Can override when creating new operators.

Returns

outputs – List of output blob names.

Return type

list

gluonts.mx.representation.binning_helpers.bin_edges_from_bin_centers(bin_centers: numpy.ndarray)[source]#
gluonts.mx.representation.binning_helpers.ensure_binning_monotonicity(bin_centers: numpy.ndarray)[source]#