Source code for gluonts.evaluation._base

# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.

import logging
import multiprocessing
import sys
from functools import partial
from itertools import chain, tee
from typing import (
    Any,
    Callable,
    Dict,
    Iterable,
    Iterator,
    List,
    Optional,
    Tuple,
    Union,
    Mapping,
    cast,
)

import numpy as np
import pandas as pd

from gluonts.gluonts_tqdm import tqdm
from gluonts.model.forecast import Forecast, Quantile
from gluonts.time_feature import get_seasonality

from .metrics import (
    abs_error,
    abs_target_mean,
    abs_target_sum,
    calculate_seasonal_error,
    coverage,
    mape,
    mase,
    mse,
    msis,
    quantile_loss,
    smape,
    num_masked_values,
)


def worker_function(evaluator: "Evaluator", inp: tuple):
    ts, forecast = inp
    return evaluator.get_metrics_per_ts(ts, forecast)


[docs]def aggregate_all( metric_per_ts: pd.DataFrame, agg_funs: Dict[str, str] ) -> Dict[str, float]: """ No filtering applied. Both `nan` and `inf` possible in aggregate metrics. """ return { key: metric_per_ts[key].agg(agg, skipna=False) for key, agg in agg_funs.items() }
[docs]def aggregate_no_nan( metric_per_ts: pd.DataFrame, agg_funs: Dict[str, str] ) -> Dict[str, float]: """ Filter all `nan` but keep `inf`. `nan` is only possible in the aggregate metric if all timeseries for a metric resulted in `nan`. """ return { key: metric_per_ts[key].agg(agg, skipna=True) for key, agg in agg_funs.items() }
[docs]def aggregate_valid( metric_per_ts: pd.DataFrame, agg_funs: Dict[str, str] ) -> Dict[str, Union[float, np.ma.core.MaskedConstant]]: """ Filter all `nan` & `inf` values from `metric_per_ts`. If all metrics in a column of `metric_per_ts` are `nan` or `inf` the result will be `np.ma.masked` for that column. """ metric_per_ts = metric_per_ts.select_dtypes(include=[np.number]).apply( np.ma.masked_invalid ) return { key: metric_per_ts[key].agg(agg, skipna=True) for key, agg in agg_funs.items() }
def validate_forecast( forecast: Forecast, quantiles: Iterable[Quantile] ) -> bool: """ Validates a Forecast object by checking it for `NaN` values. The supplied quantiles and mean (if available) are checked. Parameters ---------- forecast The forecast object. quantiles List of strings of the form 'p10' or floats in [0, 1] with the quantile levels. Returns ------- True, if the forecast's mean and quantiles have no `NaN` values, else False. """ try: mean_fcst = getattr(forecast, "mean", None) except NotImplementedError: mean_fcst = None valid = ~np.isnan(mean_fcst).any() if mean_fcst is not None else True valid &= all( ~np.isnan(forecast.quantile(q.value)).any() for q in quantiles ) return valid
[docs]class Evaluator: """ Evaluator class, to compute accuracy metrics by comparing observations to forecasts. Parameters ---------- quantiles list of strings of the form 'p10' or floats in [0, 1] with the quantile levels seasonality seasonality to use for seasonal_error, if nothing is passed uses the default seasonality for the given series frequency as returned by `get_seasonality` alpha Parameter of the MSIS metric from the M4 competition that defines the prediction interval. For alpha=0.05 (default) the 95% considered is considered in the metric, see https://www.m4.unic.ac.cy/wp-content/uploads/2018/03/M4-Competitors-Guide.pdf for more detail on MSIS calculate_owa Determines whether the OWA metric should also be calculated, which is computationally expensive to evaluate and thus slows down the evaluation process considerably. By default False. custom_eval_fn Option to include custom evaluation metrics. Expected input is a dictionary with keys specifying the name of the custom metric and the values are a list containing three elements. First, a callable which takes as input target and forecast and returns the evaluation metric. Second, a string specifying the aggregation metric across all time series, f.e. "mean", "sum". Third, either "mean" or "median" to specify whether mean or median forecast should be passed to the custom evaluation function. E.g. {"RMSE": [rmse, "mean", "median"]} num_workers The number of multiprocessing workers that will be used to process the data in parallel. Default is multiprocessing.cpu_count(). Setting it to 0 or None means no multiprocessing. chunk_size Controls the approximate chunk size each workers handles at a time. Default is 32. ignore_invalid_values Ignore `NaN` and `inf` values in the timeseries when calculating metrics. aggregation_strategy Function for aggregating per timeseries metrics. Available options are: aggregate_valid | aggregate_all | aggregate_no_nan The default function is aggregate_no_nan. allow_nan_forecast Whether to allow `NaN` values in forecasts. If False, raises an error when forecast contains `NaN` values. Defaults to False. """ default_quantiles = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 def __init__( self, quantiles: Iterable[Union[float, str]] = default_quantiles, seasonality: Optional[int] = None, alpha: float = 0.05, calculate_owa: bool = False, custom_eval_fn: Optional[Dict] = None, num_workers: Optional[int] = multiprocessing.cpu_count(), chunk_size: int = 32, aggregation_strategy: Callable = aggregate_no_nan, ignore_invalid_values: bool = True, allow_nan_forecast: bool = False, ) -> None: self.quantiles = tuple(map(Quantile.parse, quantiles)) self.seasonality = seasonality self.alpha = alpha self.calculate_owa = calculate_owa self.custom_eval_fn = custom_eval_fn self.num_workers = num_workers self.chunk_size = chunk_size self.aggregation_strategy = aggregation_strategy self.ignore_invalid_values = ignore_invalid_values self.allow_nan_forecast = allow_nan_forecast def __call__( self, ts_iterator: Iterable[Union[pd.DataFrame, pd.Series]], fcst_iterator: Iterable[Forecast], num_series: Optional[int] = None, ) -> Tuple[Dict[str, float], pd.DataFrame]: """ Compute accuracy metrics by comparing actual data to the forecasts. Parameters ---------- ts_iterator iterator containing true target on the predicted range fcst_iterator iterator of forecasts on the predicted range num_series number of series of the iterator (optional, only used for displaying progress) Returns ------- dict Dictionary of aggregated metrics pd.DataFrame DataFrame containing metrics per time series """ ts_iterator = iter(ts_iterator) fcst_iterator = iter(fcst_iterator) rows = [] with tqdm( zip(ts_iterator, fcst_iterator), total=num_series, desc="Running evaluation", ) as it, np.errstate(divide="ignore", invalid="ignore"): if self.num_workers and not sys.platform == "win32": mp_pool = multiprocessing.Pool( initializer=None, processes=self.num_workers ) rows = mp_pool.map( func=partial(worker_function, self), iterable=iter(it), chunksize=self.chunk_size, ) mp_pool.close() mp_pool.join() else: for ts, forecast in it: rows.append(self.get_metrics_per_ts(ts, forecast)) assert not any( True for _ in ts_iterator ), "ts_iterator has more elements than fcst_iterator" assert not any( True for _ in fcst_iterator ), "fcst_iterator has more elements than ts_iterator" if num_series is not None: assert len(rows) == num_series, ( f"num_series={num_series} did not match number of" f" elements={len(rows)}" ) metrics_per_ts = pd.DataFrame.from_records(rows) # If all entries of a target array are NaNs, the resulting metric will # have value "masked". Pandas does not handle masked values correctly. # Thus we set dtype=np.float64 to convert masked values back to NaNs # which are handled correctly by pandas Dataframes during # aggregation. metrics_per_ts = metrics_per_ts.astype( { col: np.float64 for col in metrics_per_ts.columns if col not in ["item_id", "forecast_start"] } ) return self.get_aggregate_metrics(metrics_per_ts)
[docs] @staticmethod def extract_pred_target( time_series: Union[pd.Series, pd.DataFrame], forecast: Forecast ) -> np.ndarray: """ Parameters ---------- time_series forecast Returns ------- np.ndarray time series cut in the Forecast object dates """ assert forecast.index.intersection(time_series.index).equals( forecast.index ), ( "Cannot extract prediction target since the index of forecast is" " outside the index of target\nIndex of forecast:" f" {forecast.index}\n Index of target: {time_series.index}" ) # cut the time series using the dates of the forecast object return np.atleast_1d( np.squeeze(time_series.loc[forecast.index].transpose()) )
# This method is needed for the owa calculation. It extracts the training # sequence from the Series or DataFrame to a numpy array
[docs] @staticmethod def extract_past_data( time_series: Union[pd.Series, pd.DataFrame], forecast: Forecast ) -> np.ndarray: """ Parameters ---------- time_series forecast Returns ------- np.ndarray time series without the forecast dates """ assert forecast.index.intersection(time_series.index).equals( forecast.index ), ( "Index of forecast is outside the index of target\nIndex of" f" forecast: {forecast.index}\n Index of target:" f" {time_series.index}" ) # Remove the prediction range # If the prediction range is not in the end of the time series, # everything after the prediction range is truncated date_before_forecast = forecast.index[0] - forecast.freq return np.atleast_1d( np.squeeze(time_series.loc[:date_before_forecast].transpose()) )
[docs] def get_base_metrics( self, forecast: Forecast, pred_target, mean_fcst, median_fcst, seasonal_error, ) -> Dict[str, Union[float, str, None]]: return { "item_id": forecast.item_id, "forecast_start": forecast.start_date, "MSE": ( mse(pred_target, mean_fcst) if mean_fcst is not None else None ), "abs_error": abs_error(pred_target, median_fcst), "abs_target_sum": abs_target_sum(pred_target), "abs_target_mean": abs_target_mean(pred_target), "seasonal_error": seasonal_error, "MASE": mase(pred_target, median_fcst, seasonal_error), "MAPE": mape(pred_target, median_fcst), "sMAPE": smape(pred_target, median_fcst), "num_masked_target_values": num_masked_values(pred_target), }
[docs] def get_metrics_per_ts( self, time_series: Union[pd.Series, pd.DataFrame], forecast: Forecast ) -> Mapping[str, Union[float, str, None, np.ma.core.MaskedConstant]]: if not validate_forecast(forecast, self.quantiles): if self.allow_nan_forecast: logging.warning( "Forecast contains NaN values. Metrics may be incorrect." ) else: raise ValueError("Forecast contains NaN values.") pred_target = np.array(self.extract_pred_target(time_series, forecast)) past_data = np.array(self.extract_past_data(time_series, forecast)) if self.ignore_invalid_values: past_data = np.ma.masked_invalid(past_data) pred_target = np.ma.masked_invalid(pred_target) try: mean_fcst = getattr(forecast, "mean", None) except NotImplementedError: mean_fcst = None median_fcst = forecast.quantile(0.5) seasonal_error = calculate_seasonal_error( past_data, forecast.start_date.freqstr, self.seasonality ) metrics: Dict[str, Union[float, str, None]] = self.get_base_metrics( forecast, pred_target, mean_fcst, median_fcst, seasonal_error ) metrics["ND"] = cast(float, metrics["abs_error"]) / cast( float, metrics["abs_target_sum"] ) if self.custom_eval_fn is not None: for k, (eval_fn, _, fcst_type) in self.custom_eval_fn.items(): if fcst_type == "mean": if mean_fcst is not None: target_fcst = mean_fcst else: logging.warning( "mean_fcst is None, therefore median_fcst is used." ) target_fcst = median_fcst else: target_fcst = median_fcst try: val = { k: eval_fn( pred_target, target_fcst, ) } except Exception: logging.warning(f"Error occurred when evaluating {k}.") val = {k: np.nan} metrics.update(val) try: metrics["MSIS"] = msis( pred_target, forecast.quantile(self.alpha / 2), forecast.quantile(1.0 - self.alpha / 2), seasonal_error, self.alpha, ) except Exception: logging.warning("Could not calculate MSIS metric.") metrics["MSIS"] = np.nan if self.calculate_owa: from gluonts.ext.naive_2 import naive_2 naive_median_forecast = naive_2( past_data, len(pred_target), season_length=get_seasonality(forecast.start_date.freqstr), ) metrics["sMAPE_naive2"] = smape(pred_target, naive_median_forecast) metrics["MASE_naive2"] = mase( pred_target, naive_median_forecast, seasonal_error ) for quantile in self.quantiles: forecast_quantile = forecast.quantile(quantile.value) metrics[f"QuantileLoss[{quantile}]"] = quantile_loss( pred_target, forecast_quantile, quantile.value ) metrics[f"Coverage[{quantile}]"] = coverage( pred_target, forecast_quantile ) return metrics
[docs] def get_aggregate_metrics( self, metric_per_ts: pd.DataFrame ) -> Tuple[Dict[str, float], pd.DataFrame]: # Define how to aggregate metrics agg_funs = { "MSE": "mean", "abs_error": "sum", "abs_target_sum": "sum", "abs_target_mean": "mean", "seasonal_error": "mean", "MASE": "mean", "MAPE": "mean", "sMAPE": "mean", "MSIS": "mean", "num_masked_target_values": "sum", } if self.calculate_owa: agg_funs["sMAPE_naive2"] = "mean" agg_funs["MASE_naive2"] = "mean" for quantile in self.quantiles: agg_funs[f"QuantileLoss[{quantile}]"] = "sum" agg_funs[f"Coverage[{quantile}]"] = "mean" if self.custom_eval_fn is not None: for k, (_, agg_type, _) in self.custom_eval_fn.items(): agg_funs.update({k: agg_type}) assert ( set(metric_per_ts.columns) >= agg_funs.keys() ), "Some of the requested item metrics are missing." # Compute the aggregation totals = self.aggregation_strategy( metric_per_ts=metric_per_ts, agg_funs=agg_funs ) # Compute derived metrics totals["RMSE"] = np.sqrt(totals["MSE"]) totals["NRMSE"] = totals["RMSE"] / totals["abs_target_mean"] totals["ND"] = totals["abs_error"] / totals["abs_target_sum"] for quantile in self.quantiles: totals[f"wQuantileLoss[{quantile}]"] = ( totals[f"QuantileLoss[{quantile}]"] / totals["abs_target_sum"] ) totals["mean_absolute_QuantileLoss"] = np.array( [ totals[f"QuantileLoss[{quantile}]"] for quantile in self.quantiles ] ).mean() totals["mean_wQuantileLoss"] = np.array( [ totals[f"wQuantileLoss[{quantile}]"] for quantile in self.quantiles ] ).mean() totals["MAE_Coverage"] = np.mean( [ np.abs(totals[f"Coverage[{quantile}]"] - np.array([q.value])) for q in self.quantiles ] ) # Compute OWA if required if self.calculate_owa: if totals["sMAPE_naive2"] == 0 or totals["MASE_naive2"] == 0: logging.warning( "OWA cannot be computed as Naive2 yields an sMAPE or MASE" " of 0." ) totals["OWA"] = np.nan else: totals["OWA"] = 0.5 * ( totals["sMAPE"] / totals["sMAPE_naive2"] + totals["MASE"] / totals["MASE_naive2"] ) # We get rid of the naive_2 metrics del totals["sMAPE_naive2"] del totals["MASE_naive2"] else: totals["OWA"] = np.nan return totals, metric_per_ts
[docs]class MultivariateEvaluator(Evaluator): """ The MultivariateEvaluator class evaluates forecasts for multivariate or multi-dimensional observations. Evaluations of individual dimensions will be stored with the corresponding dimension prefix and contain metrics calculated only for this dimension. Metrics with the plain metric name correspond to metrics calculated over all dimensions. Additionally, the user can provide custom aggregation functions that first aggregate the target and forecast over dimensions and then calculate the metric. These metrics will be prefixed with m_<aggregation_fun_name>_ The evaluation dimensions can be set by the user. Example: {'0_MSE': 0.004307240342677687, # MSE of dimension 0 '0_abs_error': 1.6246897801756859, '1_MSE': 0.003949341769475723, # MSE of dimension 1 '1_abs_error': 1.5052175521850586, 'MSE': 0.004128291056076705, # MSE of all dimensions 'abs_error': 3.1299073323607445, 'm_sum_MSE': 0.02 # MSE of aggregated target and aggregated forecast (if target_agg_funcs is set). 'm_sum_abs_error': 4.2} """ def __init__( self, quantiles: Iterable[Union[float, str]] = np.linspace(0.1, 0.9, 9), seasonality: Optional[int] = None, alpha: float = 0.05, eval_dims: Optional[List[int]] = None, target_agg_funcs: Dict[str, Callable] = {}, custom_eval_fn: Optional[dict] = None, num_workers: Optional[int] = None, ) -> None: """ Parameters ---------- quantiles list of strings of the form 'p10' or floats in [0, 1] with the quantile levels seasonality seasonality to use for seasonal_error, if nothing is passed uses the default seasonality for the given series frequency as returned by `get_seasonality` alpha parameter of the MSIS metric that defines the CI, e.g., for alpha=0.05 the 95% CI is considered in the metric. eval_dims dimensions of the target that will be evaluated. target_agg_funcs pass key-value pairs that define aggregation functions over the dimension axis. Useful to compute metrics over aggregated target and forecast (typically sum or mean). num_workers The number of multiprocessing workers that will be used to process metric for each dimension of the multivariate forecast. """ super().__init__( quantiles=quantiles, seasonality=seasonality, alpha=alpha, custom_eval_fn=custom_eval_fn, num_workers=num_workers, ) self._eval_dims = eval_dims self.target_agg_funcs = target_agg_funcs
[docs] @staticmethod def extract_target_by_dim( it_iterator: Iterator[pd.DataFrame], dim: int ) -> Iterator[pd.DataFrame]: for i in it_iterator: yield (i[dim])
[docs] @staticmethod def extract_forecast_by_dim( forecast_iterator: Iterator[Forecast], dim: int ) -> Iterator[Forecast]: for forecast in forecast_iterator: yield forecast.copy_dim(dim)
[docs] @staticmethod def extract_aggregate_target( it_iterator: Iterator[pd.DataFrame], agg_fun: Callable ) -> Iterator[pd.DataFrame]: for i in it_iterator: yield i.agg(agg_fun, axis=1)
[docs] @staticmethod def extract_aggregate_forecast( forecast_iterator: Iterator[Forecast], agg_fun: Callable ) -> Iterator[Forecast]: for forecast in forecast_iterator: yield forecast.copy_aggregate(agg_fun)
[docs] @staticmethod def peek(iterator: Iterator[Any]) -> Tuple[Any, Iterator[Any]]: peeked_object = iterator.__next__() iterator = chain([peeked_object], iterator) return peeked_object, iterator
[docs] @staticmethod def get_target_dimensionality(forecast: Forecast) -> int: target_dim = forecast.dim() assert target_dim > 1, ( "the dimensionality of the forecast should be larger than 1, " f"but got {target_dim}. " "Please use the Evaluator to evaluate 1D forecasts." ) return target_dim
[docs] def get_eval_dims(self, target_dimensionality: int) -> List[int]: eval_dims = ( self._eval_dims if self._eval_dims is not None else list(range(0, target_dimensionality)) ) assert max(eval_dims) < target_dimensionality, ( "eval dims should range from 0 to target_dimensionality - 1, " f"but got max eval_dim {max(eval_dims)}" ) return eval_dims
[docs] def calculate_aggregate_multivariate_metrics( self, ts_iterator: Iterator[pd.DataFrame], forecast_iterator: Iterator[Forecast], agg_fun: Callable, ) -> Dict[str, float]: """ Parameters ---------- ts_iterator Iterator over time series forecast_iterator Iterator over forecasts agg_fun aggregation function Returns ------- Dict[str, float] dictionary with aggregate datasets metrics """ agg_metrics, _ = super().__call__( self.extract_aggregate_target(ts_iterator, agg_fun), self.extract_aggregate_forecast(forecast_iterator, agg_fun), ) return agg_metrics
[docs] def calculate_aggregate_vector_metrics( self, all_agg_metrics: Dict[str, float], all_metrics_per_ts: pd.DataFrame, ) -> Dict[str, float]: """ Parameters ---------- all_agg_metrics dictionary with aggregate metrics of individual dimensions all_metrics_per_ts DataFrame containing metrics for all time series of all evaluated dimensions Returns ------- Dict[str, float] dictionary with aggregate metrics (of individual (evaluated) dimensions and the entire vector) """ vector_aggregate_metrics, _ = self.get_aggregate_metrics( all_metrics_per_ts ) for key, value in vector_aggregate_metrics.items(): all_agg_metrics[key] = value return all_agg_metrics
def __call__( self, ts_iterator: Iterable[pd.DataFrame], fcst_iterator: Iterable[Forecast], num_series=None, ) -> Tuple[Dict[str, float], pd.DataFrame]: """ Compute accuracy metrics for multivariate forecasts. Parameters ---------- ts_iterator iterator over target time series. Each element of the iterator must be a DataFrame with columns representing individual dimensions of the multivariate time series and timestamps as index. fcst_iterator iterator over `Forecast` objects. Returns ------- Dict[str, float] dictionary of forecast accuracy metrics. """ ts_iterator = iter(ts_iterator) fcst_iterator = iter(fcst_iterator) all_agg_metrics = dict() all_metrics_per_ts = list() peeked_forecast, fcst_iterator = self.peek(fcst_iterator) target_dimensionality = self.get_target_dimensionality(peeked_forecast) eval_dims = self.get_eval_dims(target_dimensionality) ts_iterator_set = tee( ts_iterator, target_dimensionality + len(self.target_agg_funcs) ) fcst_iterator_set = tee( fcst_iterator, target_dimensionality + len(self.target_agg_funcs) ) for dim in eval_dims: agg_metrics, metrics_per_ts = super().__call__( self.extract_target_by_dim(ts_iterator_set[dim], dim), self.extract_forecast_by_dim(fcst_iterator_set[dim], dim), ) all_metrics_per_ts.append(metrics_per_ts) for metric, value in agg_metrics.items(): all_agg_metrics[f"{dim}_{metric}"] = value all_metrics_per_ts = pd.concat(all_metrics_per_ts) all_agg_metrics = self.calculate_aggregate_vector_metrics( all_agg_metrics, all_metrics_per_ts ) if self.target_agg_funcs: multivariate_metrics = { agg_fun_name: self.calculate_aggregate_multivariate_metrics( ts_iterator_set[-(index + 1)], fcst_iterator_set[-(index + 1)], agg_fun, ) for index, (agg_fun_name, agg_fun) in enumerate( self.target_agg_funcs.items() ) } for key, metric_dict in multivariate_metrics.items(): prefix = f"m_{key}_" for metric, value in metric_dict.items(): all_agg_metrics[prefix + metric] = value return all_agg_metrics, all_metrics_per_ts