Source code for gluonts.evaluation.metrics

# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.

from typing import Optional

import numpy as np

from gluonts.time_feature import get_seasonality


[docs]def calculate_seasonal_error( past_data: np.ndarray, freq: Optional[str] = None, seasonality: Optional[int] = None, ): r""" .. math:: seasonal\_error = mean(|Y[t] - Y[t-m]|) where m is the seasonal frequency. See [HA21]_ for more details. """ # Check if the length of the time series is larger than the seasonal # frequency if not seasonality: assert freq is not None, "Either freq or seasonality must be provided" seasonality = get_seasonality(freq) if seasonality < len(past_data): forecast_freq = seasonality else: # edge case: the seasonal freq is larger than the length of ts # revert to freq=1 # logging.info('The seasonal frequency is larger than the length of the # time series. Reverting to freq=1.') forecast_freq = 1 y_t = past_data[:-forecast_freq] y_tm = past_data[forecast_freq:] return np.mean(abs(y_t - y_tm))
[docs]def mse(target: np.ndarray, forecast: np.ndarray) -> float: r""" .. math:: mse = mean((Y - \hat{Y})^2) See [HA21]_ for more details. """ return np.mean(np.square(target - forecast))
[docs]def abs_error(target: np.ndarray, forecast: np.ndarray) -> float: r""" Absolute error. .. math:: abs\_error = sum(|Y - \hat{Y}|) """ return np.sum(np.abs(target - forecast))
[docs]def quantile_loss(target: np.ndarray, forecast: np.ndarray, q: float) -> float: r""" Quantile loss. .. math:: quantile\_loss = 2 * sum(|(Y - \hat{Y}) * (Y <= \hat{Y}) - q|) """ return 2 * np.sum(np.abs((forecast - target) * ((target <= forecast) - q)))
[docs]def coverage(target: np.ndarray, forecast: np.ndarray) -> float: r""" coverage. .. math:: coverage = mean(Y <= \hat{Y}) """ return float(np.mean(target <= forecast))
[docs]def mase( target: np.ndarray, forecast: np.ndarray, seasonal_error: float, ) -> float: r""" .. math:: mase = mean(|Y - \hat{Y}|) / seasonal\_error See [HA21]_ for more details. """ return np.mean(np.abs(target - forecast)) / seasonal_error
[docs]def mape(target: np.ndarray, forecast: np.ndarray) -> float: r""" .. math:: mape = mean(|Y - \hat{Y}| / |Y|)) See [HA21]_ for more details. """ return np.mean(np.abs(target - forecast) / np.abs(target))
[docs]def smape(target: np.ndarray, forecast: np.ndarray) -> float: r""" .. math:: smape = 2 * mean(|Y - \hat{Y}| / (|Y| + |\hat{Y}|)) See [HA21]_ for more details. """ return 2 * np.mean( np.abs(target - forecast) / (np.abs(target) + np.abs(forecast)) )
[docs]def msis( target: np.ndarray, lower_quantile: np.ndarray, upper_quantile: np.ndarray, seasonal_error: float, alpha: float, ) -> float: r""" .. math:: msis = mean(U - L + 2/alpha * (L-Y) * I[Y<L] + 2/alpha * (Y-U) * I[Y>U]) / seasonal\_error See [SSA20]_ for more details. """ # noqa: E501 numerator = np.mean( upper_quantile - lower_quantile + 2.0 / alpha * (lower_quantile - target) * (target < lower_quantile) + 2.0 / alpha * (target - upper_quantile) * (target > upper_quantile) ) return numerator / seasonal_error
[docs]def abs_target_sum(target) -> float: r""" Absolute target sum. .. math:: abs\_target\_sum = sum(|Y|) """ return np.sum(np.abs(target))
[docs]def abs_target_mean(target) -> float: r""" Absolute target mean. .. math:: abs\_target\_mean = mean(|Y|) """ return np.mean(np.abs(target))
[docs]def num_masked_values(target) -> float: """ Count number of masked values in target. """ if np.ma.isMaskedArray(target): return np.ma.count_masked(target) else: return 0