Source code for gluonts.torch.distributions.quantile_output
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
from typing import List, Optional, Tuple
import torch
from gluonts.core.component import validated
from gluonts.model.forecast_generator import (
ForecastGenerator,
QuantileForecastGenerator,
)
from .distribution_output import Output
[docs]class QuantileOutput(Output):
@validated()
def __init__(self, quantiles: List[float]) -> None:
assert len(quantiles) > 0
assert all(0.0 < q < 1.0 for q in quantiles)
self._quantiles = sorted(quantiles)
self.num_quantiles = len(self._quantiles)
self.args_dim = {"outputs": self.num_quantiles}
@property
def forecast_generator(self) -> ForecastGenerator:
return QuantileForecastGenerator(quantiles=self.quantiles)
@property
def event_shape(self) -> Tuple:
return ()
@property
def quantiles(self) -> List[float]:
return self._quantiles
[docs] def loss(
self,
target: torch.Tensor,
distr_args: Tuple[torch.Tensor, ...],
loc: Optional[torch.Tensor] = None,
scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
(quantile_preds,) = distr_args
if scale is not None:
quantile_preds = quantile_preds * scale.unsqueeze(-1)
if loc is not None:
quantile_preds = quantile_preds + loc.unsqueeze(-1)
target = target.unsqueeze(-1)
quantiles = torch.as_tensor(
self.quantiles,
device=quantile_preds.device,
dtype=quantile_preds.dtype,
)
return 2 * (
(target - quantile_preds)
* ((target <= quantile_preds).float() - quantiles)
).abs().mean(dim=-1)