Source code for gluonts.torch.distributions.quantile_output

# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.

from typing import List, Optional, Tuple

import torch

from gluonts.core.component import validated
from gluonts.model.forecast_generator import (
    ForecastGenerator,
    QuantileForecastGenerator,
)

from .distribution_output import Output


[docs]class QuantileOutput(Output): @validated() def __init__(self, quantiles: List[float]) -> None: assert len(quantiles) > 0 assert all(0.0 < q < 1.0 for q in quantiles) self._quantiles = sorted(quantiles) self.num_quantiles = len(self._quantiles) self.args_dim = {"outputs": self.num_quantiles} @property def forecast_generator(self) -> ForecastGenerator: return QuantileForecastGenerator(quantiles=self.quantiles) @property def event_shape(self) -> Tuple: return ()
[docs] def domain_map(self, *args: torch.Tensor) -> Tuple[torch.Tensor, ...]: return args
@property def quantiles(self) -> List[float]: return self._quantiles
[docs] def loss( self, target: torch.Tensor, distr_args: Tuple[torch.Tensor, ...], loc: Optional[torch.Tensor] = None, scale: Optional[torch.Tensor] = None, ) -> torch.Tensor: (quantile_preds,) = distr_args if scale is not None: quantile_preds = quantile_preds * scale.unsqueeze(-1) if loc is not None: quantile_preds = quantile_preds + loc.unsqueeze(-1) target = target.unsqueeze(-1) quantiles = torch.as_tensor( self.quantiles, device=quantile_preds.device, dtype=quantile_preds.dtype, ) return 2 * ( (target - quantile_preds) * ((target <= quantile_preds).float() - quantiles) ).abs().mean(dim=-1)