# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
from gluonts.core.component import validated
from gluonts.time_feature import get_lags_for_frequency
from gluonts.torch.distributions import (
DistributionOutput,
StudentTOutput,
)
from gluonts.torch.scaler import Scaler, MeanScaler, NOPScaler
from gluonts.torch.modules.feature import FeatureEmbedder
from gluonts.torch.util import (
lagged_sequence_values,
repeat_along_dim,
take_last,
unsqueeze_expand,
)
from gluonts.itertools import prod
from gluonts.model import Input, InputSpec
[docs]class DeepARModel(nn.Module):
"""
Module implementing the DeepAR model, see [SFG17]_.
*Note:* the code of this model is unrelated to the implementation behind
`SageMaker's DeepAR Forecasting Algorithm
<https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html>`_.
Parameters
----------
freq
String indicating the sampling frequency of the data to be processed.
context_length
Length of the RNN unrolling prior to the forecast date.
prediction_length
Number of time points to predict.
num_feat_dynamic_real
Number of dynamic real features that will be provided to ``forward``.
num_feat_static_real
Number of static real features that will be provided to ``forward``.
num_feat_static_cat
Number of static categorical features that will be provided to
``forward``.
cardinality
List of cardinalities, one for each static categorical feature.
embedding_dimension
Dimension of the embedding space, one for each static categorical
feature.
num_layers
Number of layers in the RNN.
hidden_size
Size of the hidden layers in the RNN.
dropout_rate
Dropout rate to be applied at training time.
distr_output
Type of distribution to be output by the model at each time step
lags_seq
Indices of the lagged observations that the RNN takes as input. For
example, ``[1]`` indicates that the RNN only takes the observation at
time ``t-1`` to produce the output for time ``t``; instead,
``[1, 25]`` indicates that the RNN takes observations at times ``t-1``
and ``t-25`` as input.
scaling
Whether to apply mean scaling to the observations (target).
default_scale
Default scale that is applied if the context length window is
completely unobserved. If not set, the scale in this case will be
the mean scale in the batch.
num_parallel_samples
Number of samples to produce when unrolling the RNN in the prediction
time range.
nonnegative_pred_samples
Should final prediction samples be non-negative? If yes, an activation
function is applied to ensure non-negative. Observe that this is applied
only to the final samples and this is not applied during training.
"""
@validated()
def __init__(
self,
freq: str,
context_length: int,
prediction_length: int,
num_feat_dynamic_real: int = 1,
num_feat_static_real: int = 1,
num_feat_static_cat: int = 1,
cardinality: List[int] = [1],
embedding_dimension: Optional[List[int]] = None,
num_layers: int = 2,
hidden_size: int = 40,
dropout_rate: float = 0.1,
distr_output: DistributionOutput = StudentTOutput(),
lags_seq: Optional[List[int]] = None,
scaling: bool = True,
default_scale: Optional[float] = None,
num_parallel_samples: int = 100,
nonnegative_pred_samples: bool = False,
) -> None:
super().__init__()
assert distr_output.event_shape == ()
assert num_feat_dynamic_real > 0
assert num_feat_static_real > 0
assert num_feat_static_cat > 0
assert len(cardinality) == num_feat_static_cat
assert (
embedding_dimension is None
or len(embedding_dimension) == num_feat_static_cat
)
self.context_length = context_length
self.prediction_length = prediction_length
self.distr_output = distr_output
self.param_proj = distr_output.get_args_proj(hidden_size)
self.num_feat_dynamic_real = num_feat_dynamic_real
self.num_feat_static_cat = num_feat_static_cat
self.num_feat_static_real = num_feat_static_real
self.embedding_dimension = (
embedding_dimension
if embedding_dimension is not None or cardinality is None
else [min(50, (cat + 1) // 2) for cat in cardinality]
)
self.lags_seq = lags_seq or get_lags_for_frequency(freq_str=freq)
self.lags_seq = [l - 1 for l in self.lags_seq]
self.num_parallel_samples = num_parallel_samples
self.past_length = self.context_length + max(self.lags_seq)
self.embedder = FeatureEmbedder(
cardinalities=cardinality,
embedding_dims=self.embedding_dimension,
)
if scaling:
self.scaler: Scaler = MeanScaler(
dim=-1, keepdim=True, default_scale=default_scale
)
else:
self.scaler = NOPScaler(dim=-1, keepdim=True)
self.rnn_input_size = len(self.lags_seq) + self._number_of_features
self.rnn = nn.LSTM(
input_size=self.rnn_input_size,
hidden_size=hidden_size,
num_layers=num_layers,
dropout=dropout_rate,
batch_first=True,
)
self.nonnegative_pred_samples = nonnegative_pred_samples
@property
def _number_of_features(self) -> int:
return (
sum(self.embedding_dimension)
+ self.num_feat_dynamic_real
+ self.num_feat_static_real
+ 1 # the log(scale)
)
@property
def _past_length(self) -> int:
return self.context_length + max(self.lags_seq)
[docs] def unroll_lagged_rnn(
self,
feat_static_cat: torch.Tensor,
feat_static_real: torch.Tensor,
past_time_feat: torch.Tensor,
past_target: torch.Tensor,
past_observed_values: torch.Tensor,
future_time_feat: torch.Tensor,
future_target: Optional[torch.Tensor] = None,
) -> Tuple[
Tuple[torch.Tensor, ...],
torch.Tensor,
torch.Tensor,
torch.Tensor,
Tuple[torch.Tensor, torch.Tensor],
]:
"""
Applies the underlying RNN to the provided target data and covariates.
Parameters
----------
feat_static_cat
Tensor of static categorical features,
shape: ``(batch_size, num_feat_static_cat)``.
feat_static_real
Tensor of static real features,
shape: ``(batch_size, num_feat_static_real)``.
past_time_feat
Tensor of dynamic real features in the past,
shape: ``(batch_size, past_length, num_feat_dynamic_real)``.
past_target
Tensor of past target values,
shape: ``(batch_size, past_length)``.
past_observed_values
Tensor of observed values indicators,
shape: ``(batch_size, past_length)``.
future_time_feat
Tensor of dynamic real features in the future,
shape: ``(batch_size, prediction_length, num_feat_dynamic_real)``.
future_target
(Optional) tensor of future target values,
shape: ``(batch_size, prediction_length)``.
Returns
-------
Tuple
A tuple containing, in this order:
- Parameters of the output distribution
- Scaling factor applied to the target
- Raw output of the RNN
- Static input to the RNN
- Output state from the RNN
"""
rnn_input, scale, static_feat = self.prepare_rnn_input(
feat_static_cat,
feat_static_real,
past_time_feat,
past_target,
past_observed_values,
future_time_feat,
future_target,
)
output, new_state = self.rnn(rnn_input)
params = self.param_proj(output)
return params, scale, output, static_feat, new_state
[docs] @torch.jit.ignore
def output_distribution(
self, params, scale=None, trailing_n=None
) -> torch.distributions.Distribution:
"""
Instantiate the output distribution.
Parameters
----------
params
Tuple of distribution parameters.
scale
(Optional) scale tensor.
trailing_n
If set, the output distribution is created only for the last
``trailing_n`` time points.
Returns
-------
torch.distributions.Distribution
Output distribution from the model.
"""
sliced_params = params
if trailing_n is not None:
sliced_params = [p[:, -trailing_n:] for p in params]
return self.distr_output.distribution(sliced_params, scale=scale)
[docs] def post_process_samples(self, samples: torch.Tensor) -> torch.Tensor:
"""
Method to enforce domain-specific constraints on the generated samples.
For example, we can enforce forecasts to be nonnegative.
Parameters
----------
samples
Tensor of samples
Returns
-------
Tensor of processed samples with the same shape.
"""
if self.nonnegative_pred_samples:
return torch.relu(samples)
return samples
[docs] def forward(
self,
feat_static_cat: torch.Tensor,
feat_static_real: torch.Tensor,
past_time_feat: torch.Tensor,
past_target: torch.Tensor,
past_observed_values: torch.Tensor,
future_time_feat: torch.Tensor,
num_parallel_samples: Optional[int] = None,
) -> torch.Tensor:
"""
Invokes the model on input data, and produce outputs future samples.
Parameters
----------
feat_static_cat
Tensor of static categorical features,
shape: ``(batch_size, num_feat_static_cat)``.
feat_static_real
Tensor of static real features,
shape: ``(batch_size, num_feat_static_real)``.
past_time_feat
Tensor of dynamic real features in the past,
shape: ``(batch_size, past_length, num_feat_dynamic_real)``.
past_target
Tensor of past target values,
shape: ``(batch_size, past_length)``.
past_observed_values
Tensor of observed values indicators,
shape: ``(batch_size, past_length)``.
future_time_feat
(Optional) tensor of dynamic real features in the past,
shape: ``(batch_size, prediction_length, num_feat_dynamic_real)``.
num_parallel_samples
How many future samples to produce.
By default, self.num_parallel_samples is used.
"""
if num_parallel_samples is None:
num_parallel_samples = self.num_parallel_samples
params, scale, _, static_feat, state = self.unroll_lagged_rnn(
feat_static_cat,
feat_static_real,
past_time_feat,
past_target,
past_observed_values,
future_time_feat[:, :1],
)
repeated_scale = scale.repeat_interleave(
repeats=num_parallel_samples, dim=0
)
repeated_static_feat = static_feat.repeat_interleave(
repeats=num_parallel_samples, dim=0
).unsqueeze(dim=1)
repeated_past_target = (
past_target.repeat_interleave(repeats=num_parallel_samples, dim=0)
/ repeated_scale
)
repeated_time_feat = future_time_feat.repeat_interleave(
repeats=num_parallel_samples, dim=0
)
repeated_state = [
s.repeat_interleave(repeats=num_parallel_samples, dim=1)
for s in state
]
repeated_params = [
s.repeat_interleave(repeats=num_parallel_samples, dim=0)
for s in params
]
distr = self.output_distribution(
repeated_params, trailing_n=1, scale=repeated_scale
)
next_sample = distr.sample()
future_samples = [next_sample]
for k in range(1, self.prediction_length):
scaled_next_sample = next_sample / repeated_scale
next_features = torch.cat(
(repeated_static_feat, repeated_time_feat[:, k : k + 1]),
dim=-1,
)
next_lags = lagged_sequence_values(
self.lags_seq, repeated_past_target, scaled_next_sample, dim=-1
)
rnn_input = torch.cat((next_lags, next_features), dim=-1)
output, repeated_state = self.rnn(rnn_input, repeated_state)
repeated_past_target = torch.cat(
(repeated_past_target, scaled_next_sample), dim=1
)
params = self.param_proj(output)
distr = self.output_distribution(params, scale=repeated_scale)
next_sample = distr.sample()
future_samples.append(next_sample)
future_samples_concat = torch.cat(future_samples, dim=1)
future_samples_concat = self.post_process_samples(
future_samples_concat
)
return future_samples_concat.reshape(
(-1, num_parallel_samples, self.prediction_length)
)
[docs] def log_prob(
self,
feat_static_cat: torch.Tensor,
feat_static_real: torch.Tensor,
past_time_feat: torch.Tensor,
past_target: torch.Tensor,
past_observed_values: torch.Tensor,
future_time_feat: torch.Tensor,
future_target: torch.Tensor,
) -> torch.Tensor:
return -self.loss(
feat_static_cat=feat_static_cat,
feat_static_real=feat_static_real,
past_time_feat=past_time_feat,
past_target=past_target,
past_observed_values=past_observed_values,
future_time_feat=future_time_feat,
future_target=future_target,
future_observed_values=torch.ones_like(future_target),
future_only=True,
aggregate_by=torch.sum,
)
[docs] def loss(
self,
feat_static_cat: torch.Tensor,
feat_static_real: torch.Tensor,
past_time_feat: torch.Tensor,
past_target: torch.Tensor,
past_observed_values: torch.Tensor,
future_time_feat: torch.Tensor,
future_target: torch.Tensor,
future_observed_values: torch.Tensor,
future_only: bool = False,
aggregate_by=torch.mean,
) -> torch.Tensor:
extra_dims = len(future_target.shape) - len(past_target.shape)
extra_shape = future_target.shape[:extra_dims]
batch_shape = future_target.shape[: extra_dims + 1]
repeats = prod(extra_shape)
feat_static_cat = repeat_along_dim(feat_static_cat, 0, repeats)
feat_static_real = repeat_along_dim(feat_static_real, 0, repeats)
past_time_feat = repeat_along_dim(past_time_feat, 0, repeats)
past_target = repeat_along_dim(past_target, 0, repeats)
past_observed_values = repeat_along_dim(
past_observed_values, 0, repeats
)
future_time_feat = repeat_along_dim(future_time_feat, 0, repeats)
future_target_reshaped = future_target.reshape(
-1,
*future_target.shape[extra_dims + 1 :],
)
future_observed_reshaped = future_observed_values.reshape(
-1,
*future_observed_values.shape[extra_dims + 1 :],
)
params, scale, _, _, _ = self.unroll_lagged_rnn(
feat_static_cat,
feat_static_real,
past_time_feat,
past_target,
past_observed_values,
future_time_feat,
future_target_reshaped,
)
if future_only:
sliced_params = tuple(
[p[:, -self.prediction_length :] for p in params]
)
loss_values = self.distr_output.loss(
target=future_target_reshaped,
distr_args=sliced_params,
scale=scale,
)
loss_values = loss_values * future_observed_reshaped
else:
context_target = take_last(
past_target, dim=-1, num=self.context_length - 1
)
target = torch.cat(
(context_target, future_target_reshaped),
dim=1,
)
context_observed = take_last(
past_observed_values, dim=-1, num=self.context_length - 1
)
observed_values = torch.cat(
(context_observed, future_observed_reshaped), dim=1
)
loss_values = self.distr_output.loss(
target=target, distr_args=params, scale=scale
)
loss_values = loss_values * observed_values
loss_values = loss_values.reshape(*batch_shape, *loss_values.shape[1:])
return aggregate_by(
loss_values,
dim=tuple(range(extra_dims + 1, len(future_target.shape))),
)