Source code for gluonts.torch.model.tide.lightning_module

# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.

import lightning.pytorch as pl
import torch
from torch.optim.lr_scheduler import ReduceLROnPlateau

from gluonts.core.component import validated

from gluonts.itertools import select
from gluonts.torch.model.lightning_util import has_validation_loop


from .module import TiDEModel


[docs]class TiDELightningModule(pl.LightningModule): """ A ``pl.LightningModule`` class that can be used to train a ``TiDEModel`` with PyTorch Lightning. This is a thin layer around a (wrapped) ``TiDEModel`` object, that exposes the methods to evaluate training and validation loss. Parameters ---------- model_kwargs Keyword arguments to construct the ``TiDEModel`` to be trained. lr Learning rate. weight_decay Weight decay regularization parameter. patience Patience parameter for learning rate scheduler. """ @validated() def __init__( self, model_kwargs: dict, lr: float = 1e-3, weight_decay: float = 1e-8, patience: int = 10, ): super().__init__() self.save_hyperparameters() self.model = TiDEModel(**model_kwargs) self.lr = lr self.weight_decay = weight_decay self.patience = patience self.inputs = self.model.describe_inputs()
[docs] def forward(self, *args, **kwargs): return self.model(*args, **kwargs)
[docs] def training_step(self, batch, batch_idx: int): # type: ignore """ Execute training step. """ train_loss = self.model.loss( **select(self.inputs, batch), future_target=batch["future_target"], future_observed_values=batch["future_observed_values"], ).mean() self.log( "train_loss", train_loss, on_epoch=True, on_step=False, prog_bar=True, ) return train_loss
[docs] def validation_step(self, batch, batch_idx: int): # type: ignore """ Execute validation step. """ val_loss = self.model.loss( **select(self.inputs, batch), future_target=batch["future_target"], future_observed_values=batch["future_observed_values"], ).mean() self.log( "val_loss", val_loss, on_epoch=True, on_step=False, prog_bar=True ) return val_loss
[docs] def configure_optimizers(self): """ Returns the optimizer to use. """ optimizer = torch.optim.Adam( self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay, ) monitor = ( "val_loss" if has_validation_loop(self.trainer) else "train_loss" ) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": ReduceLROnPlateau( optimizer=optimizer, mode="min", factor=0.5, patience=self.patience, ), "monitor": monitor, }, }