Source code for gluonts.torch.model.wavenet.lightning_module

# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.

import lightning.pytorch as pl
import torch

from gluonts.core.component import validated

from .module import WaveNet


[docs]class WaveNetLightningModule(pl.LightningModule): """ LightningModule wrapper over WaveNet. Parameters ---------- model_kwargs Keyword arguments to pass to WaveNet. lr, optional Learning rate, by default 1e-3 weight_decay, optional Weight decay, by default 1e-8 """ @validated() def __init__( self, model_kwargs: dict, lr: float = 1e-3, weight_decay: float = 1e-8, ) -> None: super().__init__() self.save_hyperparameters() self.model = WaveNet(**model_kwargs) self.lr = lr self.weight_decay = weight_decay
[docs] def forward(self, *args, **kwargs): return self.model(*args, **kwargs)
[docs] def training_step(self, batch, batch_idx: int): # type: ignore """ Execute training step. """ feat_static_cat = batch["feat_static_cat"] feat_static_real = batch["feat_static_real"] past_target = batch["past_target"] past_observed_values = batch["past_observed_values"] past_time_feat = batch["past_time_feat"] future_target = batch["future_target"] future_observed_values = batch["future_observed_values"] future_time_feat = batch["future_time_feat"] scale = batch["scale"] train_loss = self.model.loss( feat_static_cat=feat_static_cat, feat_static_real=feat_static_real, past_target=past_target, past_observed_values=past_observed_values, past_time_feat=past_time_feat, future_target=future_target, future_observed_values=future_observed_values, future_time_feat=future_time_feat, scale=scale, ).mean() self.log( "train_loss", train_loss, on_epoch=True, on_step=False, prog_bar=True, ) return train_loss
[docs] def validation_step(self, batch, batch_idx: int): # type: ignore """ Execute validation step. """ feat_static_cat = batch["feat_static_cat"] feat_static_real = batch["feat_static_real"] past_target = batch["past_target"] past_observed_values = batch["past_observed_values"] past_time_feat = batch["past_time_feat"] future_target = batch["future_target"] future_observed_values = batch["future_observed_values"] future_time_feat = batch["future_time_feat"] scale = batch["scale"] val_loss = self.model.loss( feat_static_cat=feat_static_cat, feat_static_real=feat_static_real, past_target=past_target, past_observed_values=past_observed_values, past_time_feat=past_time_feat, future_target=future_target, future_observed_values=future_observed_values, future_time_feat=future_time_feat, scale=scale, ).mean() self.log( "val_loss", val_loss, on_epoch=True, on_step=False, prog_bar=True, ) return val_loss
[docs] def configure_optimizers(self): """ Returns the optimizer to use. """ return torch.optim.AdamW( self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay, )