gluonts.model.deep_factor package#
- class gluonts.model.deep_factor.DeepFactorEstimator(freq: str, prediction_length: int, num_hidden_global: int = 50, num_layers_global: int = 1, num_factors: int = 10, num_hidden_local: int = 5, num_layers_local: int = 1, cell_type: str = 'lstm', trainer: gluonts.mx.trainer._base.Trainer = gluonts.mx.trainer._base.Trainer(add_default_callbacks=True, callbacks=None, clip_gradient=10.0, ctx=None, epochs=100, hybridize=True, init='xavier', learning_rate=0.001, num_batches_per_epoch=50, weight_decay=1e-08), context_length: Optional[int] = None, num_parallel_samples: int = 100, cardinality: List[int] = [1], embedding_dimension: int = 10, distr_output: gluonts.mx.distribution.distribution_output.DistributionOutput = gluonts.mx.distribution.student_t.StudentTOutput(), batch_size: int = 32)[source]#
Bases:
gluonts.mx.model.estimator.GluonEstimator
DeepFactorEstimator is an implementation of the 2019 ICML paper “Deep Factors for Forecasting” https://arxiv.org/abs/1905.12417. It uses a global RNN model to learn patterns across multiple related time series and an arbitrary local model to model the time series on a per time series basis. In the current implementation, the local model is a RNN (DF-RNN).
- Parameters
freq – Time series frequency.
prediction_length (int) – Prediction length.
num_hidden_global – Number of units per hidden layer for the global RNN model (default: 50).
num_layers_global – Number of hidden layers for the global RNN model (default: 1).
num_factors – Number of global factors (default: 10).
num_hidden_local – Number of units per hidden layer for the local RNN model (default: 5).
num_layers_local – Number of hidden layers for the global local model (default: 1).
cell_type – Type of recurrent cells to use (available: ‘lstm’ or ‘gru’; default: ‘lstm’).
trainer – Trainer object to be used (default: Trainer()).
context_length – Training length (default: None, in which case context_length = prediction_length).
num_parallel_samples – Number of evaluation samples per time series to increase parallelism during inference. This is a model optimization that does not affect the accuracy (default: 100).
cardinality – List consisting of the number of time series (default: list([1]).
embedding_dimension – Dimension of the embeddings for categorical features (the same dimension is used for all embeddings, default: 10).
distr_output – Distribution to use to evaluate observations and sample predictions (default: StudentTOutput()).
batch_size – The size of the batches to be used training and prediction.
- create_predictor(transformation: gluonts.transform._base.Transformation, trained_network: gluonts.mx.model.deep_factor._network.DeepFactorTrainingNetwork) gluonts.model.predictor.Predictor [source]#
Create and return a predictor object.
- Parameters
transformation – Transformation to be applied to data before it goes into the model.
module – A trained HybridBlock object.
- Returns
A predictor wrapping a HybridBlock used for inference.
- Return type
- create_training_data_loader(data: gluonts.dataset.Dataset, **kwargs) Iterable[Dict[str, Any]] [source]#
Create a data loader for training purposes.
- Parameters
data – Dataset from which to create the data loader.
- Returns
The data loader, i.e. and iterable over batches of data.
- Return type
DataLoader
- create_training_network() gluonts.mx.model.deep_factor._network.DeepFactorTrainingNetwork [source]#
Create and return the network used for training (i.e., computing the loss).
- Returns
The network that computes the loss given input data.
- Return type
HybridBlock
- create_transformation() gluonts.transform._base.Transformation [source]#
Create and return the transformation needed for training and inference.
- Returns
The transformation that will be applied entry-wise to datasets, at training and inference time.
- Return type
- create_validation_data_loader(data: gluonts.dataset.Dataset, **kwargs) Iterable[Dict[str, Any]] [source]#
Create a data loader for validation purposes.
- Parameters
data – Dataset from which to create the data loader.
- Returns
The data loader, i.e. and iterable over batches of data.
- Return type
DataLoader
- lead_time: int#
- prediction_length: int#