gluonts.nursery.spliced_binned_pareto.training_functions module#
- gluonts.nursery.spliced_binned_pareto.training_functions.eval_on_series(distr_tcn: gluonts.nursery.spliced_binned_pareto.distr_tcn.DistributionalTCN, optimizer: torch.optim.adam.Adam, series_tensor: torch.Tensor, ts_len: int, context_length: int, is_train: bool = False, return_predictions: bool = False, lead_time: int = 1)[source]#
- Parameters
distr_tcn (DistributionalTCN) –
otimizer (Optimizer containing parameters, learning rate, etc) –
series_tensor (Time series) –
ts_len (Length of time series) –
context_length (Number of time steps to input) –
is_train (True if time series is training set) –
return_predictions (True if to return (loss, predictions), False if to return loss only) –
lead_time (Number of time steps to predict ahead) –
- gluonts.nursery.spliced_binned_pareto.training_functions.highlight_min(data, color='lightgreen')[source]#
Highlights the minimum in a Series or DataFrame.
- gluonts.nursery.spliced_binned_pareto.training_functions.plot_prediction(val_ts_tensor: torch.Tensor, predictions: torch.Tensor, context_length: int, lead_time: int = 1, start: int = 0, end: int = 500, fig: Optional[matplotlib.figure.Figure] = None)[source]#
- Parameters
val_ts_tensor (Time series) –
predictions (Prediction series) –
context_length (Number of time steps to input) –
lead_time (Number of time steps to predict ahead) –
start (Index of time series at which to start plotting) –
end (Index of time series at which to end plotting) –
- gluonts.nursery.spliced_binned_pareto.training_functions.train_step_from_batch(ts_chunks: torch.Tensor, targets: torch.Tensor, distr_tcn: gluonts.nursery.spliced_binned_pareto.distr_tcn.DistributionalTCN, optimizer: torch.optim.adam.Adam)[source]#
- Parameters
ts_chunks (Mini-batch chunked from the time series) –
targets (Corresponding chunk of target values) –
distr_tcn (DistributionalTCN) –
otimizer (Optimizer containing parameters, learning rate, etc) –