gluonts.torch.util module#
- class gluonts.torch.util.IterableDataset(iterable)[source]#
Bases:
torch.utils.data.dataset.IterableDataset
- gluonts.torch.util.copy_parameters(net_source: torch.nn.modules.module.Module, net_dest: torch.nn.modules.module.Module, strict: Optional[bool] = True) None [source]#
Copies parameters from one network to another.
- Parameters
net_source – Input network.
net_dest – Output network.
strict – whether to strictly enforce that the keys in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
- gluonts.torch.util.lagged_sequence_values(indices: List[int], prior_sequence: torch.Tensor, sequence: torch.Tensor) torch.Tensor [source]#
Constructs an array of lagged values from a given sequence.
- Parameters
indices – Indices of the lagged observations. For example,
[0]
indicates that, at any timet
, the will have only the observation from timet
itself; instead,[0, 24]
indicates that the output will have observations from timest
andt-24
.prior_sequence – Tensor containing the input sequence prior to the time range for which the output is required (shape:
(N, H, C)
).sequence – Tensor containing the input sequence in the time range where the output is required (shape:
(N, T, C)
).
- Returns
A tensor of shape
(N, T, L)
: ifI = len(indices)
, andsequence.shape = (N, T, C)
, thenL = C * I
.- Return type
Tensor
- gluonts.torch.util.weighted_average(x: torch.Tensor, weights: Optional[torch.Tensor] = None, dim=None) torch.Tensor [source]#
Computes the weighted average of a given tensor across a given dim, masking values associated with weight zero,
meaning instead of nan * 0 = nan you will get 0 * 0 = 0.
- Parameters
x – Input tensor, of which the average must be computed.
weights – Weights tensor, of the same shape as x.
dim – The dim along which to average x
- Returns
The tensor with values averaged along the specified dim.
- Return type
Tensor