gluonts.torch.model.deepar package#

class gluonts.torch.model.deepar.DeepAREstimator(freq: str, prediction_length: int, context_length: Optional[int] = None, num_layers: int = 2, hidden_size: int = 40, lr: float = 0.001, weight_decay: float = 1e-08, dropout_rate: float = 0.1, patience: int = 10, num_feat_dynamic_real: int = 0, num_feat_static_cat: int = 0, num_feat_static_real: int = 0, cardinality: Optional[List[int]] = None, embedding_dimension: Optional[List[int]] = None, distr_output: gluonts.torch.distributions.distribution_output.DistributionOutput = gluonts.torch.distributions.distribution_output.StudentTOutput(), loss: gluonts.torch.modules.loss.DistributionLoss = NegativeLogLikelihood(beta=0.0), scaling: bool = True, lags_seq: Optional[List[int]] = None, time_features: Optional[List[Callable[[pandas.core.indexes.period.PeriodIndex], numpy.ndarray]]] = None, num_parallel_samples: int = 100, batch_size: int = 32, num_batches_per_epoch: int = 50, trainer_kwargs: Optional[Dict[str, Any]] = None, train_sampler: Optional[gluonts.transform.sampler.InstanceSampler] = None, validation_sampler: Optional[gluonts.transform.sampler.InstanceSampler] = None)[source]#

Bases: gluonts.torch.model.estimator.PyTorchLightningEstimator

Estimator class to train a DeepAR model, as described in [SFG17].

This class is uses the model defined in DeepARModel, and wraps it into a DeepARLightningModule for training purposes: training is performed using PyTorch Lightning’s pl.Trainer class.

Note: the code of this model is unrelated to the implementation behind SageMaker’s DeepAR Forecasting Algorithm.

Parameters
  • freq – Frequency of the data to train on and predict.

  • prediction_length (int) – Length of the prediction horizon.

  • context_length – Number of steps to unroll the RNN for before computing predictions (default: None, in which case context_length = prediction_length).

  • num_layers – Number of RNN layers (default: 2).

  • hidden_size – Number of RNN cells for each layer (default: 40).

  • lr – Learning rate (default: 1e-3).

  • weight_decay – Weight decay regularization parameter (default: 1e-8).

  • dropout_rate – Dropout regularization parameter (default: 0.1).

  • patience – Patience parameter for learning rate scheduler.

  • num_feat_dynamic_real – Number of dynamic real features in the data (default: 0).

  • num_feat_static_real – Number of static real features in the data (default: 0).

  • num_feat_static_cat – Number of static categorical features in the data (default: 0).

  • cardinality – Number of values of each categorical feature. This must be set if num_feat_static_cat > 0 (default: None).

  • embedding_dimension – Dimension of the embeddings for categorical features (default: [min(50, (cat+1)//2) for cat in cardinality]).

  • distr_output – Distribution to use to evaluate observations and sample predictions (default: StudentTOutput()).

  • loss – Loss to be optimized during training (default: NegativeLogLikelihood()).

  • scaling – Whether to automatically scale the target values (default: true).

  • lags_seq – Indices of the lagged target values to use as inputs of the RNN (default: None, in which case these are automatically determined based on freq).

  • time_features – List of time features, from gluonts.time_feature, to use as inputs of the RNN in addition to the provided data (default: None, in which case these are automatically determined based on freq).

  • num_parallel_samples – Number of samples per time series to that the resulting predictor should produce (default: 100).

  • batch_size – The size of the batches to be used for training (default: 32).

  • num_batches_per_epoch – Number of batches to be processed in each training epoch (default: 50).

  • trainer_kwargs – Additional arguments to provide to pl.Trainer for construction.

  • train_sampler – Controls the sampling of windows during training.

  • validation_sampler – Controls the sampling of windows during validation.

create_lightning_module() gluonts.torch.model.deepar.lightning_module.DeepARLightningModule[source]#

Create and return the network used for training (i.e., computing the loss).

Returns

The network that computes the loss given input data.

Return type

pl.LightningModule

create_predictor(transformation: gluonts.transform._base.Transformation, module: gluonts.torch.model.deepar.lightning_module.DeepARLightningModule) gluonts.torch.model.predictor.PyTorchPredictor[source]#

Create and return a predictor object.

Parameters
  • transformation – Transformation to be applied to data before it goes into the model.

  • module – A trained pl.LightningModule object.

Returns

A predictor wrapping a nn.Module used for inference.

Return type

Predictor

create_training_data_loader(data: gluonts.dataset.Dataset, module: gluonts.torch.model.deepar.lightning_module.DeepARLightningModule, shuffle_buffer_length: Optional[int] = None, **kwargs) Iterable[source]#

Create a data loader for training purposes.

Parameters
  • data – Dataset from which to create the data loader.

  • module – The pl.LightningModule object that will receive the batches from the data loader.

Returns

The data loader, i.e. and iterable over batches of data.

Return type

Iterable

create_transformation() gluonts.transform._base.Transformation[source]#

Create and return the transformation needed for training and inference.

Returns

The transformation that will be applied entry-wise to datasets, at training and inference time.

Return type

Transformation

create_validation_data_loader(data: gluonts.dataset.Dataset, module: gluonts.torch.model.deepar.lightning_module.DeepARLightningModule, **kwargs) Iterable[source]#

Create a data loader for validation purposes.

Parameters
  • data – Dataset from which to create the data loader.

  • module – The pl.LightningModule object that will receive the batches from the data loader.

Returns

The data loader, i.e. and iterable over batches of data.

Return type

Iterable

lead_time: int#
prediction_length: int#
class gluonts.torch.model.deepar.DeepARLightningModule(model: gluonts.torch.model.deepar.module.DeepARModel, loss: gluonts.torch.modules.loss.DistributionLoss = NegativeLogLikelihood(beta=0.0), lr: float = 0.001, weight_decay: float = 1e-08, patience: int = 10)[source]#

Bases: pytorch_lightning.core.module.LightningModule

A pl.LightningModule class that can be used to train a DeepARModel with PyTorch Lightning.

This is a thin layer around a (wrapped) DeepARModel object, that exposes the methods to evaluate training and validation loss.

Parameters
  • modelDeepARModel to be trained.

  • loss – Loss function to be used for training, default: NegativeLogLikelihood().

  • lr – Learning rate, default: 1e-3.

  • weight_decay – Weight decay regularization parameter, default: 1e-8.

  • patience – Patience parameter for learning rate scheduler, default: 10.

configure_optimizers()[source]#

Returns the optimizer to use.

forward(*args, **kwargs)[source]#

Same as torch.nn.Module.forward().

Parameters
  • *args – Whatever you decide to pass into the forward method.

  • **kwargs – Keyword arguments are also possible.

Returns

Your model’s output

training_step(batch, batch_idx: int)[source]#

Execute training step.

validation_step(batch, batch_idx: int)[source]#

Execute validation step.

class gluonts.torch.model.deepar.DeepARModel(freq: str, context_length: int, prediction_length: int, num_feat_dynamic_real: int, num_feat_static_real: int, num_feat_static_cat: int, cardinality: List[int], embedding_dimension: Optional[List[int]] = None, num_layers: int = 2, hidden_size: int = 40, dropout_rate: float = 0.1, distr_output: gluonts.torch.distributions.distribution_output.DistributionOutput = gluonts.torch.distributions.distribution_output.StudentTOutput(), lags_seq: Optional[List[int]] = None, scaling: bool = True, num_parallel_samples: int = 100)[source]#

Bases: torch.nn.modules.module.Module

Module implementing the DeepAR model, see [SFG17].

Note: the code of this model is unrelated to the implementation behind SageMaker’s DeepAR Forecasting Algorithm.

Parameters
  • freq – String indicating the sampling frequency of the data to be processed.

  • context_length – Length of the RNN unrolling prior to the forecast date.

  • prediction_length – Number of time points to predict.

  • num_feat_dynamic_real – Number of dynamic real features that will be provided to forward.

  • num_feat_static_real – Number of static real features that will be provided to forward.

  • num_feat_static_cat – Number of static categorical features that will be provided to forward.

  • cardinality – List of cardinalities, one for each static categorical feature.

  • embedding_dimension – Dimension of the embedding space, one for each static categorical feature.

  • num_layers – Number of layers in the RNN.

  • hidden_size – Size of the hidden layers in the RNN.

  • dropout_rate – Dropout rate to be applied at training time.

  • distr_output – Type of distribution to be output by the model at each time step

  • lags_seq – Indices of the lagged observations that the RNN takes as input. For example, [1] indicates that the RNN only takes the observation at time t-1 to produce the output for time t; instead, [1, 25] indicates that the RNN takes observations at times t-1 and t-25 as input.

  • scaling – Whether to apply mean scaling to the observations (target).

  • num_parallel_samples – Number of samples to produce when unrolling the RNN in the prediction time range.

forward(feat_static_cat: torch.Tensor, feat_static_real: torch.Tensor, past_time_feat: torch.Tensor, past_target: torch.Tensor, past_observed_values: torch.Tensor, future_time_feat: torch.Tensor, num_parallel_samples: Optional[int] = None) torch.Tensor[source]#

Invokes the model on input data, and produce outputs future samples.

Parameters
  • feat_static_cat – Tensor of static categorical features, shape: (batch_size, num_feat_static_cat).

  • feat_static_real – Tensor of static real features, shape: (batch_size, num_feat_static_real).

  • past_time_feat – Tensor of dynamic real features in the past, shape: (batch_size, past_length, num_feat_dynamic_real).

  • past_target – Tensor of past target values, shape: (batch_size, past_length, *target_shape).

  • past_observed_values – Tensor of observed values indicators, shape: (batch_size, past_length).

  • future_time_feat – (Optional) tensor of dynamic real features in the past, shape: (batch_size, prediction_length, num_feat_dynamic_real).

  • num_parallel_samples – How many future sampels to produce. By default, self.num_parallel_samples is used.

input_shapes(batch_size=1) Dict[str, Tuple[int, ...]][source]#
input_types() Dict[str, torch.dtype][source]#
output_distribution(params, scale=None, trailing_n=None) torch.distributions.distribution.Distribution[source]#

Instantiate the output distribution

Parameters
  • params – Tuple of distribution parameters.

  • scale – (Optional) scale tensor.

  • trailing_n – If set, the output distribution is created only for the last trailing_n time points.

Returns

Output distribution from the model.

Return type

torch.distributions.Distribution

training: bool#
unroll_lagged_rnn(feat_static_cat: torch.Tensor, feat_static_real: torch.Tensor, past_time_feat: torch.Tensor, past_target: torch.Tensor, past_observed_values: torch.Tensor, future_time_feat: Optional[torch.Tensor] = None, future_target: Optional[torch.Tensor] = None) Tuple[Tuple[torch.Tensor, ...], torch.Tensor, torch.Tensor, torch.Tensor, Tuple[torch.Tensor, torch.Tensor]][source]#

Applies the underlying RNN to the provided target data and covariates.

Parameters
  • feat_static_cat – Tensor of static categorical features, shape: (batch_size, num_feat_static_cat).

  • feat_static_real – Tensor of static real features, shape: (batch_size, num_feat_static_real).

  • past_time_feat – Tensor of dynamic real features in the past, shape: (batch_size, past_length, num_feat_dynamic_real).

  • past_target – Tensor of past target values, shape: (batch_size, past_length, *target_shape).

  • past_observed_values – Tensor of observed values indicators, shape: (batch_size, past_length).

  • future_time_feat – (Optional) tensor of dynamic real features in the past, shape: (batch_size, prediction_length, num_feat_dynamic_real).

  • future_target – (Optional) tensor of future target values, shape: (batch_size, prediction_length, *target_shape).

Returns

A tuple containing, in this order: - Parameters of the output distribution - Scaling factor applied to the target - Raw output of the RNN - Static input to the RNN - Output state from the RNN

Return type

Tuple