gluonts.mx.distribution.inflated_beta module#
- class gluonts.mx.distribution.inflated_beta.OneInflatedBeta(alpha: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], beta: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], one_probability: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol])[source]#
Bases:
gluonts.mx.distribution.inflated_beta.ZeroAndOneInflatedBeta
One Inflated Beta distribution as in Raydonal Ospina, Silvia L.P. Ferrari: Inflated Beta Distributions
- Parameters
alpha – Tensor containing the alpha shape parameters, of shape (*batch_shape, *event_shape).
beta – Tensor containing the beta shape parameters, of shape (*batch_shape, *event_shape).
one_probability – Tensor containing the probability of ones, of shape (*batch_shape, *event_shape).
F –
- arg_names: Tuple#
- is_reparameterizable = False#
- class gluonts.mx.distribution.inflated_beta.OneInflatedBetaOutput[source]#
Bases:
gluonts.mx.distribution.inflated_beta.ZeroInflatedBetaOutput
- args_dim: Dict[str, int] = {'alpha': 1, 'beta': 1, 'one_probability': 1}#
- distr_cls#
alias of
gluonts.mx.distribution.inflated_beta.OneInflatedBeta
- classmethod domain_map(F, alpha, beta, one_probability)[source]#
Maps raw tensors to valid arguments for constructing a ZeroInflatedBeta distribution.
- Parameters
F –
alpha – Tensor of shape (*batch_shape, 1)
beta – Tensor of shape (*batch_shape, 1)
zero_probability – Tensor of shape (*batch_shape, 1)
- Returns
Three squeezed tensors, of shape (*batch_shape): First two have entries mapped to the positive orthant, last is mapped to (0,1)
- Return type
Tuple[Tensor, Tensor, Tensor]
- class gluonts.mx.distribution.inflated_beta.ZeroAndOneInflatedBeta(alpha: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], beta: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], zero_probability: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], one_probability: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol])[source]#
Bases:
gluonts.mx.distribution.mixture.MixtureDistribution
Zero And One Inflated Beta distribution as in Raydonal Ospina, Silvia L.P. Ferrari: Inflated Beta Distributions
- Parameters
alpha – Tensor containing the alpha shape parameters, of shape (*batch_shape, *event_shape).
beta – Tensor containing the beta shape parameters, of shape (*batch_shape, *event_shape).
zero_probability – Tensor containing the probability of zeros, of shape (*batch_shape, *event_shape).
one_probability – Tensor containing the probability of ones, of shape (*batch_shape, *event_shape).
F –
- arg_names: Tuple#
- is_reparameterizable = False#
- log_prob(x: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]) Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol] [source]#
Compute the log-density of the distribution at x.
- Parameters
x – Tensor of shape (*batch_shape, *event_shape).
- Returns
Tensor of shape batch_shape containing the log-density of the distribution for each event in x.
- Return type
Tensor
- class gluonts.mx.distribution.inflated_beta.ZeroAndOneInflatedBetaOutput[source]#
Bases:
gluonts.mx.distribution.distribution_output.DistributionOutput
- args_dim: Dict[str, int] = {'alpha': 1, 'beta': 1, 'one_probability': 1, 'zero_probability': 1}#
- distr_cls#
alias of
gluonts.mx.distribution.inflated_beta.ZeroAndOneInflatedBeta
- classmethod domain_map(F, alpha, beta, zero_probability, one_probability)[source]#
Maps raw tensors to valid arguments for constructing a ZeroAndOneInflatedBeta distribution.
- Parameters
F –
alpha – Tensor of shape (*batch_shape, 1)
beta – Tensor of shape (*batch_shape, 1)
zero_probability – Tensor of shape (*batch_shape, 1)
- Returns
Four squeezed tensors, of shape (*batch_shape): First two have entries mapped to the positive orthant, zero_probability is mapped to (0, 1), one_probability is mapped to (0, 1-zero_probability)
- Return type
Tuple[Tensor, Tensor, Tensor, Tensor]
- property event_shape: Tuple#
Shape of each individual event contemplated by the distributions that this object constructs.
- property value_in_support: float#
A float that will have a valid numeric value when computing the log-loss of the corresponding distribution. By default 0.0. This value will be used when padding data series.
- class gluonts.mx.distribution.inflated_beta.ZeroInflatedBeta(alpha: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], beta: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], zero_probability: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol])[source]#
Bases:
gluonts.mx.distribution.inflated_beta.ZeroAndOneInflatedBeta
Zero Inflated Beta distribution as in Raydonal Ospina, Silvia L.P. Ferrari: Inflated Beta Distributions
- Parameters
alpha – Tensor containing the alpha shape parameters, of shape (*batch_shape, *event_shape).
beta – Tensor containing the beta shape parameters, of shape (*batch_shape, *event_shape).
zero_probability – Tensor containing the probability of zeros, of shape (*batch_shape, *event_shape).
F –
- arg_names: Tuple#
- is_reparameterizable = False#
- class gluonts.mx.distribution.inflated_beta.ZeroInflatedBetaOutput[source]#
Bases:
gluonts.mx.distribution.inflated_beta.ZeroAndOneInflatedBetaOutput
- args_dim: Dict[str, int] = {'alpha': 1, 'beta': 1, 'zero_probability': 1}#
- distr_cls#
alias of
gluonts.mx.distribution.inflated_beta.ZeroInflatedBeta
- classmethod domain_map(F, alpha, beta, zero_probability)[source]#
Maps raw tensors to valid arguments for constructing a ZeroInflatedBeta distribution.
- Parameters
F –
alpha – Tensor of shape (*batch_shape, 1)
beta – Tensor of shape (*batch_shape, 1)
zero_probability – Tensor of shape (*batch_shape, 1)
- Returns
Three squeezed tensors, of shape (*batch_shape): First two have entries mapped to the positive orthant, last is mapped to (0,1)
- Return type
Tuple[Tensor, Tensor, Tensor]