gluonts.ev.metrics module#

class gluonts.ev.metrics.AverageMeanScaledQuantileLoss(quantile_levels: 'Collection[float]')[source]#

Bases: BaseMetricDefinition

static mean(**quantile_losses: ndarray) ndarray[source]#
quantile_levels: Collection[float]#
class gluonts.ev.metrics.BaseMetricDefinition[source]#

Bases: object

add(*others)[source]#
class gluonts.ev.metrics.Coverage(q: 'float')[source]#

Bases: BaseMetricDefinition

q: float#
class gluonts.ev.metrics.DerivedMetric(name: str, metrics: Dict[str, Metric], post_process: Callable)[source]#

Bases: Metric

A Metric that is computed using other metrics.

A derived metric updates multiple, simpler metrics independently and in the end combines their results as defined in post_process.

get() ndarray[source]#
metrics: Dict[str, Metric]#
post_process: Callable#
update(data: Mapping[str, ndarray]) Self[source]#

Update metric using a single data instance.

class gluonts.ev.metrics.DirectMetric(name: str, stat: Callable, aggregate: Aggregation)[source]#

Bases: Metric

A Metric which uses a single function and aggregation strategy.

aggregate: Aggregation#
get() ndarray[source]#
stat: Callable#
update(data: Mapping[str, ndarray]) Self[source]#

Update metric using a single data instance.

class gluonts.ev.metrics.MAE(forecast_type: str = '0.5')[source]#

Bases: BaseMetricDefinition

Mean Absolute Error.

forecast_type: str = '0.5'#
class gluonts.ev.metrics.MAECoverage(quantile_levels: 'Collection[float]')[source]#

Bases: BaseMetricDefinition

static mean(quantile_levels: Collection[float], **coverages: ndarray) ndarray[source]#
quantile_levels: Collection[float]#
class gluonts.ev.metrics.MAPE(forecast_type: str = '0.5')[source]#

Bases: BaseMetricDefinition

Mean Absolute Percentage Error.

forecast_type: str = '0.5'#
class gluonts.ev.metrics.MASE(forecast_type: str = '0.5')[source]#

Bases: BaseMetricDefinition

Mean Absolute Scaled Error.

forecast_type: str = '0.5'#
class gluonts.ev.metrics.MSE(forecast_type: str = 'mean')[source]#

Bases: BaseMetricDefinition

Mean Squared Error.

forecast_type: str = 'mean'#
class gluonts.ev.metrics.MSIS(alpha: float = 0.05)[source]#

Bases: BaseMetricDefinition

Mean Scaled Interval Score.

alpha: float = 0.05#
class gluonts.ev.metrics.MeanAbsoluteLabel[source]#

Bases: BaseMetricDefinition

class gluonts.ev.metrics.MeanScaledQuantileLoss(q: 'float')[source]#

Bases: BaseMetricDefinition

q: float#
class gluonts.ev.metrics.MeanSumQuantileLoss(quantile_levels: 'Collection[float]')[source]#

Bases: BaseMetricDefinition

static mean(**quantile_losses: ndarray) ndarray[source]#
quantile_levels: Collection[float]#
class gluonts.ev.metrics.MeanWeightedSumQuantileLoss(quantile_levels: 'Collection[float]')[source]#

Bases: BaseMetricDefinition

static mean(**quantile_losses: ndarray) ndarray[source]#
quantile_levels: Collection[float]#
class gluonts.ev.metrics.Metric(name: 'str')[source]#

Bases: object

get() ndarray[source]#
name: str#
update(data: Mapping[str, ndarray]) Self[source]#

Update metric using a single data instance.

update_all(stream: Iterator[Mapping[str, ndarray]]) Self[source]#

Update metric using a stream of data instances.

class gluonts.ev.metrics.MetricCollection(metrics: 'List[Metric]')[source]#

Bases: object

get() Dict[str, ndarray][source]#
metrics: List[Metric]#
update(data: Mapping[str, ndarray]) Self[source]#

Update metrics using a single data instance.

update_all(stream: Iterator[Mapping[str, ndarray]]) Self[source]#

Update metrics using a stream of data instances.

class gluonts.ev.metrics.MetricDefinition(*args, **kwargs)[source]#

Bases: Protocol

class gluonts.ev.metrics.MetricDefinitionCollection(metrics: 'List[BaseMetricDefinition]')[source]#

Bases: BaseMetricDefinition

metrics: List[BaseMetricDefinition]#
class gluonts.ev.metrics.ND(forecast_type: str = '0.5')[source]#

Bases: BaseMetricDefinition

Normalized Deviation.

forecast_type: str = '0.5'#
static normalized_deviation(sum_absolute_error: ndarray, sum_absolute_label: ndarray) ndarray[source]#
class gluonts.ev.metrics.NRMSE(forecast_type: str = 'mean')[source]#

Bases: BaseMetricDefinition

RMSE, normalized by the mean absolute label.

forecast_type: str = 'mean'#
static normalize_root_mean_squared_error(root_mean_squared_error: ndarray, mean_absolute_label: ndarray) ndarray[source]#
class gluonts.ev.metrics.OWA(forecast_type: str = '0.5')[source]#

Bases: BaseMetricDefinition

Overall Weighted Average.

static calculate_OWA(smape: ndarray, smape_naive2: ndarray, mase: ndarray, mase_naive2: ndarray) ndarray[source]#
forecast_type: str = '0.5'#
class gluonts.ev.metrics.RMSE(forecast_type: str = 'mean')[source]#

Bases: BaseMetricDefinition

Root Mean Squared Error.

forecast_type: str = 'mean'#
static root_mean_squared_error(mean_squared_error: ndarray) ndarray[source]#
class gluonts.ev.metrics.SMAPE(forecast_type: str = '0.5')[source]#

Bases: BaseMetricDefinition

Symmetric Mean Absolute Percentage Error.

forecast_type: str = '0.5'#
class gluonts.ev.metrics.SumAbsoluteError(forecast_type: 'str' = '0.5')[source]#

Bases: BaseMetricDefinition

forecast_type: str = '0.5'#
class gluonts.ev.metrics.SumAbsoluteLabel[source]#

Bases: BaseMetricDefinition

class gluonts.ev.metrics.SumError(forecast_type: 'str' = '0.5')[source]#

Bases: BaseMetricDefinition

forecast_type: str = '0.5'#
class gluonts.ev.metrics.SumNumMaskedTargetValues[source]#

Bases: BaseMetricDefinition

class gluonts.ev.metrics.SumQuantileLoss(q: 'float')[source]#

Bases: BaseMetricDefinition

q: float#
class gluonts.ev.metrics.WeightedSumQuantileLoss(q: 'float')[source]#

Bases: BaseMetricDefinition

q: float#
static weight_sum_quantile_loss(sum_quantile_loss: ndarray, sum_absolute_label: ndarray) ndarray[source]#