gluonts.mx.distribution.categorical module#
- class gluonts.mx.distribution.categorical.Categorical(log_probs: Union[NDArray, Symbol])[source]#
Bases:
Distribution
A categorical distribution over num_cats-many categories.
- Parameters
log_probs – Tensor containing log probabilities of the individual categories, of shape (*batch_shape, num_cats).
F –
- property F#
- property args: List#
- property batch_shape: Tuple#
Layout of the set of events contemplated by the distribution.
Invoking sample() from a distribution yields a tensor of shape batch_shape + event_shape, and computing log_prob (or loss more in general) on such sample will yield a tensor of shape batch_shape.
This property is available in general only in mx.ndarray mode, when the shape of the distribution arguments can be accessed.
- property event_dim: int#
Number of event dimensions, i.e., length of the event_shape tuple.
This is 0 for distributions over scalars, 1 over vectors, 2 over matrices, and so on.
- property event_shape: Tuple#
Shape of each individual event contemplated by the distribution.
For example, distributions over scalars have event_shape = (), over vectors have event_shape = (d, ) where d is the length of the vectors, over matrices have event_shape = (d1, d2), and so on.
Invoking sample() from a distribution yields a tensor of shape batch_shape + event_shape.
This property is available in general only in mx.ndarray mode, when the shape of the distribution arguments can be accessed.
- log_prob(x)[source]#
Compute the log-density of the distribution at x.
- Parameters
x – Tensor of shape (*batch_shape, *event_shape).
- Returns
Tensor of shape batch_shape containing the log-density of the distribution for each event in x.
- Return type
Tensor
- property mean#
Tensor containing the mean of the distribution.
- property probs#
- sample(num_samples=None, dtype=<class 'numpy.int32'>)[source]#
Draw samples from the distribution.
If num_samples is given the first dimension of the output will be num_samples.
- Parameters
num_samples – Number of samples to to be drawn.
dtype – Data-type of the samples.
- Returns
A tensor containing samples. This has shape (*batch_shape, *eval_shape) if num_samples = None and (num_samples, *batch_shape, *eval_shape) otherwise.
- Return type
Tensor
- property stddev#
Tensor containing the standard deviation of the distribution.
- class gluonts.mx.distribution.categorical.CategoricalOutput(num_cats: int, temperature: float = 1.0)[source]#
Bases:
DistributionOutput
- distr_cls#
alias of
Categorical
- distribution(distr_args, loc=None, scale=None, **kwargs) Distribution [source]#
Construct the associated distribution, given the collection of constructor arguments and, optionally, a scale tensor.
- Parameters
distr_args – Constructor arguments for the underlying Distribution type.
loc – Optional tensor, of the same shape as the batch_shape+event_shape of the resulting distribution.
scale – Optional tensor, of the same shape as the batch_shape+event_shape of the resulting distribution.
- domain_map(F, probs)[source]#
Converts arguments to the right shape and domain.
The domain depends on the type of distribution, while the correct shape is obtained by reshaping the trailing axis in such a way that the returned tensors define a distribution of the right event_shape.
- property event_shape: Tuple#
Shape of each individual event contemplated by the distributions that this object constructs.