gluonts.model package#
- class gluonts.model.Estimator(lead_time: int = 0, **kwargs)[source]#
Bases:
object
An abstract class representing a trainable model.
The underlying model is trained by calling the train method with a training Dataset, producing a Predictor object.
- lead_time: int#
- prediction_length: int#
- train(training_data: Dataset, validation_data: Optional[Dataset] = None) Predictor [source]#
Train the estimator on the given data.
- Parameters
training_data – Dataset to train the model on.
validation_data – Dataset to validate the model on during training.
- Returns
The predictor containing the trained model.
- Return type
- class gluonts.model.Forecast[source]#
Bases:
object
Abstract class representing predictions.
- copy_aggregate(agg_fun: Callable)[source]#
Return a new Forecast object with a time series aggregated over the dimension axis.
- Parameters
agg_fun – Aggregation function that defines the aggregation operation (typically mean or sum).
- copy_dim(dim: int)[source]#
Return a new Forecast object with only the selected sub-dimension.
- Parameters
dim – The returned forecast object will only represent this dimension.
- property freq#
- property index: PeriodIndex#
- info: Optional[Dict]#
- item_id: Optional[str]#
- property mean: ndarray#
- property median: ndarray#
- plot(*, intervals=(0.5, 0.9), ax=None, color=None, name=None, show_label=False)[source]#
Plot median forecast and prediction intervals using
matplotlib
.By default the 0.5 and 0.9 prediction intervals are plotted. Other intervals can be choosen by setting intervals.
This plots to the current axes object (via
plt.gca()
), or toax
if provided. Similarly, the color is using matplotlibs internal color cycle, if no explicitcolor
is set.One can set
name
to use it as thelabel
for the median forecast. Intervals are not labeled, unlessshow_label
is set toTrue
.
- prediction_length: int#
- quantile(q: Union[float, str]) ndarray [source]#
Compute a quantile from the predicted distribution.
- Parameters
q – Quantile to compute.
- Returns
Value of the quantile across the prediction range.
- Return type
numpy.ndarray
- start_date: Period#
- class gluonts.model.IncrementallyTrainable(*args, **kwargs)[source]#
Bases:
Protocol
- train_from(predictor: Predictor, training_data: Dataset, validation_data: Optional[Dataset] = None) Predictor [source]#
Experimental: this feature may change in future versions. Train the estimator, starting from a previously trained predictor, on the given data.
- Parameters
predictor – A previously trained model, from which to initialize the estimator training.
training_data – Dataset to train the model on.
validation_data – Dataset to validate the model on during training.
- Returns
The predictor containing the trained model.
- Return type
- class gluonts.model.Input(shape: Tuple[int, ...], dtype: Any, required: bool = True)[source]#
Bases:
object
- dtype: Any#
- required: bool = True#
- shape: Tuple[int, ...]#
- class gluonts.model.InputSpec(data: Dict[str, gluonts.model.inputs.Input], zeros_fn: Callable)[source]#
Bases:
UserDict
- property dtypes: Dict[str, Type]#
- property shapes: Dict[str, Tuple[int, ...]]#
- zeros_fn: Callable#
- class gluonts.model.Predictor(prediction_length: int, lead_time: int = 0)[source]#
Bases:
object
Abstract class representing predictor objects. :param prediction_length: Prediction horizon.
- classmethod deserialize(path: Path, **kwargs) Predictor [source]#
Load a serialized predictor from the given path.
- Parameters
path – Path to the serialized files predictor.
**kwargs – Optional context/device parameter to be used with the predictor. If nothing is passed will use the GPU if available and CPU otherwise.
- predict(dataset: Dataset, **kwargs) Iterator[Forecast] [source]#
Compute forecasts for the time series in the provided dataset. This method is not implemented in this abstract class; please use one of the subclasses. :param dataset: The dataset containing the time series to predict.
- Returns
Iterator over the forecasts, in the same order as the dataset iterable was provided.
- Return type
Iterator[Forecast]
- class gluonts.model.QuantileForecast(forecast_arrays: ndarray, start_date: Period, forecast_keys: List[str], item_id: Optional[str] = None, info: Optional[Dict] = None)[source]#
Bases:
Forecast
A Forecast that contains arrays (i.e. time series) for quantiles and mean.
- Parameters
forecast_arrays – An array of forecasts
start_date (pandas._libs.tslibs.period.Period) – start of the forecast
forecast_keys – A list of quantiles of the form ‘0.1’, ‘0.9’, etc., and potentially ‘mean’. Each entry corresponds to one array in forecast_arrays.
item_id (Optional[str]) – Identifier of the item being forecasted.
info (Optional[Dict]) – Additional information that the forecaster may provide e.g. estimated parameters, number of iterations ran etc.
- copy_dim(dim: int) QuantileForecast [source]#
Return a new Forecast object with only the selected sub-dimension.
- Parameters
dim – The returned forecast object will only represent this dimension.
- property mean: ndarray#
Forecast mean.
- class gluonts.model.SampleForecast(samples: ndarray, start_date: Period, item_id: Optional[str] = None, info: Optional[Dict] = None)[source]#
Bases:
Forecast
A Forecast object, where the predicted distribution is represented internally as samples.
- Parameters
samples – Array of size (num_samples, prediction_length) (1D case) or (num_samples, prediction_length, target_dim) (multivariate case)
start_date (pandas._libs.tslibs.period.Period) – Start of the forecast.
item_id (Optional[str]) – Identifier of the item being forecasted.
info (Optional[Dict]) – Additional information that the forecaster may provide e.g. estimated parameters, number of iterations ran etc.
- copy_aggregate(agg_fun: Callable) SampleForecast [source]#
Return a new Forecast object with a time series aggregated over the dimension axis.
- Parameters
agg_fun – Aggregation function that defines the aggregation operation (typically mean or sum).
- copy_dim(dim: int) SampleForecast [source]#
Return a new Forecast object with only the selected sub-dimension.
- Parameters
dim – The returned forecast object will only represent this dimension.
- property mean: ndarray#
Forecast mean.
- property mean_ts: Series#
Forecast mean, as a pandas.Series object.
- property num_samples#
The number of samples representing the forecast.
- property prediction_length#
Time length of the forecast.
- quantile(q: Union[float, str]) ndarray [source]#
Compute a quantile from the predicted distribution.
- Parameters
q – Quantile to compute.
- Returns
Value of the quantile across the prediction range.
- Return type
numpy.ndarray
- to_quantile_forecast(quantiles: List[str]) QuantileForecast [source]#
- gluonts.model.evaluate_forecasts(forecasts: Iterable[Forecast], *, test_data: TestData, metrics, axis: Optional[Union[int, tuple]] = None, batch_size: int = 100, mask_invalid_label: bool = True, allow_nan_forecast: bool = False, seasonality: Optional[int] = None) DataFrame [source]#
Evaluate
forecasts
by comparing them withtest_data
, according tometrics
.Note
This feature is experimental and may be subject to changes.
The optional
axis
arguments controls aggregation of the metrics: -None
(default) aggregates across all dimensions -0
aggregates across the dataset -1
aggregates across the first data dimension (time, in the univariate setting) -2
aggregates across the second data dimension (time, in the multivariate setting)Return results as a Pandas
DataFrame
.
- gluonts.model.evaluate_model(model: Predictor, *, test_data: TestData, metrics, axis: Optional[Union[int, tuple]] = None, batch_size: int = 100, mask_invalid_label: bool = True, allow_nan_forecast: bool = False, seasonality: Optional[int] = None) DataFrame [source]#
Evaluate
model
when applied totest_data
, according tometrics
.Note
This feature is experimental and may be subject to changes.
The optional
axis
arguments controls aggregation of the metrics: -None
(default) aggregates across all dimensions -0
aggregates across the dataset -1
aggregates across the first data dimension (time, in the univariate setting) -2
aggregates across the second data dimension (time, in the multivariate setting)Return results as a Pandas
DataFrame
.
Subpackages#
Submodules#
- gluonts.model.estimator module
- gluonts.model.evaluation module
- gluonts.model.forecast module
- gluonts.model.forecast_generator module
- gluonts.model.inputs module
- gluonts.model.predictor module