gluonts.mx.representation.representation module#
- class gluonts.mx.representation.representation.Representation[source]#
Bases:
HybridBlock
An abstract class representing input/output representations.
- hybrid_forward(F, data: Union[NDArray, Symbol], observed_indicator: Union[NDArray, Symbol], scale: Optional[Union[NDArray, Symbol]], rep_params: List[Union[NDArray, Symbol]], **kwargs) Tuple[Union[NDArray, Symbol], Union[NDArray, Symbol], List[Union[NDArray, Symbol]]] [source]#
Transform the data into the desired representation.
- Parameters:
F –
data – Target data.
observed_indicator – Target observed indicator.
scale – Pre-computed scale.
rep_params – Additional pre-computed representation parameters.
**kwargs – Additional block-specfic parameters.
:param : Additional block-specfic parameters.
- Returns:
Tuple consisting of the transformed data, the computed scale, and additional parameters to be passed to post_transform.
- Return type:
Tuple[Tensor, Tensor, List[Tensor]]
- initialize_from_array(input_array: ndarray, ctx: Context = cpu(0))[source]#
Initialize the representation based on a numpy array.
- Parameters:
input_array – Numpy array.
ctx – MXNet context.
- initialize_from_dataset(input_dataset: Dataset, ctx: Context = cpu(0))[source]#
Initialize the representation based on an entire dataset.
- Parameters:
input_dataset – GluonTS dataset.
ctx – MXNet context.
- post_transform(F, samples: Union[NDArray, Symbol], scale: Union[NDArray, Symbol], rep_params: List[Union[NDArray, Symbol]]) Union[NDArray, Symbol] [source]#
Transform samples back to the original representation.
- Parameters:
samples – Samples from a distribution.
scale – The scale of the samples.
rep_params – Additional representation-specific parameters used during post transformation.
- Returns:
Post-transformed samples.
- Return type:
Tensor