gluonts.torch.distributions.quantile_output module#
- class gluonts.torch.distributions.quantile_output.QuantileOutput(quantiles: List[float])[source]#
Bases:
Output
- domain_map(*args: Tensor) Tuple[Tensor, ...] [source]#
Converts arguments to the right shape and domain.
The domain depends on the type of distribution, while the correct shape is obtained by reshaping the trailing axis in such a way that the returned tensors define a distribution of the right event_shape.
- property event_shape: Tuple#
Shape of each individual event compatible with the output object.
- property forecast_generator: ForecastGenerator#
- loss(target: Tensor, distr_args: Tuple[Tensor, ...], loc: Optional[Tensor] = None, scale: Optional[Tensor] = None) Tensor [source]#
Compute loss for target data given network output.
- Parameters:
target – Values of the target time series for which loss is to be computed.
distr_args – Arguments that can be used to construct the output distribution.
loc – Location parameter of the distribution, optional.
scale – Scale parameter of the distribution, optional.
- Returns:
Values of the loss, has same shape as target.
- Return type:
loss_values
- property quantiles: List[float]#