gluonts.mx.distribution.isqf module#
- class gluonts.mx.distribution.isqf.ISQF(spline_knots: Union[NDArray, Symbol], spline_heights: Union[NDArray, Symbol], beta_l: Union[NDArray, Symbol], beta_r: Union[NDArray, Symbol], qk_y: Union[NDArray, Symbol], qk_x: Union[NDArray, Symbol], num_qk: int, num_pieces: int, tol: float = 0.0001)[source]#
Bases:
Distribution
Distribution class for the Incremental (Spline) Quantile Function in the paper
Learning Quantile Functions without Quantile Crossing for Distribution-free Time Series Forecasting
by Park, Robinson, Aubet, Kan, Gasthaus, Wang.- Parameters
spline_knots – Tensor parametrizing the x-positions (y-positions) of the spline knots Shape: (*batch_shape, (num_qk-1), num_pieces)
spline_heights – Tensor parametrizing the x-positions (y-positions) of the spline knots Shape: (*batch_shape, (num_qk-1), num_pieces)
qk_x – Tensor containing the increasing x-positions (y-positions) of the quantile knots, Shape: (*batch_shape, num_qk)
qk_y – Tensor containing the increasing x-positions (y-positions) of the quantile knots, Shape: (*batch_shape, num_qk)
beta_l – Tensor containing the non-negative learnable parameter of the left (right) tail, Shape: (*batch_shape,)
beta_r – Tensor containing the non-negative learnable parameter of the left (right) tail, Shape: (*batch_shape,)
- property F#
- arg_names: Tuple#
- property args: List#
- property batch_shape: Tuple#
Layout of the set of events contemplated by the distribution.
Invoking sample() from a distribution yields a tensor of shape batch_shape + event_shape, and computing log_prob (or loss more in general) on such sample will yield a tensor of shape batch_shape.
This property is available in general only in mx.ndarray mode, when the shape of the distribution arguments can be accessed.
- cdf(z: Union[NDArray, Symbol]) Union[NDArray, Symbol] [source]#
Computes the quantile level alpha_tilde such that q(alpha_tilde) = z :param z: Tensor of shape = (*batch_shape,)
- Returns
Tensor of shape = (*batch_shape,)
- Return type
alpha_tilde
- cdf_spline(z: Union[NDArray, Symbol]) Union[NDArray, Symbol] [source]#
For observations z and splines defined in [qk_x[k], qk_x[k+1]] Computes the quantile level alpha_tilde such that alpha_tilde.
= q^{-1}(z) if z is in-between qk_x[k] and qk_x[k+1] = qk_x[k] if z<qk_x[k] = qk_x[k+1] if z>qk_x[k+1] :param z: Observation, shape = (*batch_shape,)
- Returns
Corresponding quantile level, shape = (*batch_shape, num_qk-1)
- Return type
alpha_tilde
- cdf_tail(z: Union[NDArray, Symbol], left_tail: bool = True) Union[NDArray, Symbol] [source]#
Computes the quantile level alpha_tilde such that alpha_tilde.
= q^{-1}(z) if z is in the tail region = qk_x_l or qk_x_r if z is in the non-tail region
- crps(z: Union[NDArray, Symbol]) Union[NDArray, Symbol] [source]#
Compute CRPS in analytical form :param z: Observation to evaluate. Shape = (*batch_shape,)
- Returns
Tensor containing the CRPS, of the same shape as z
- Return type
Tensor
- crps_spline(z: Union[NDArray, Symbol]) Union[NDArray, Symbol] [source]#
Compute CRPS in analytical form for the spline :param z: Observation to evaluate. shape = (*batch_shape,)
- Returns
Tensor containing the CRPS, of the same shape as z
- Return type
Tensor
- crps_tail(z: Union[NDArray, Symbol], left_tail: bool = True) Union[NDArray, Symbol] [source]#
Compute CRPS in analytical form for left/right tails.
- Parameters
z – Observation to evaluate. shape = (*batch_shape,)
left_tail – If True, compute CRPS for the left tail Otherwise, compute CRPS for the right tail
- Returns
Tensor containing the CRPS, of the same shape as z
- Return type
Tensor
- property event_dim: int#
Number of event dimensions, i.e., length of the event_shape tuple.
This is 0 for distributions over scalars, 1 over vectors, 2 over matrices, and so on.
- property event_shape: Tuple#
Shape of each individual event contemplated by the distribution.
For example, distributions over scalars have event_shape = (), over vectors have event_shape = (d, ) where d is the length of the vectors, over matrices have event_shape = (d1, d2), and so on.
Invoking sample() from a distribution yields a tensor of shape batch_shape + event_shape.
This property is available in general only in mx.ndarray mode, when the shape of the distribution arguments can be accessed.
- is_reparameterizable = False#
- loss(z: Union[NDArray, Symbol]) Union[NDArray, Symbol] [source]#
Compute the loss at x according to the distribution.
By default, this method returns the negative of log_prob. For some distributions, however, the log-density is not easily computable and therefore other loss functions are computed.
- Parameters
x – Tensor of shape (*batch_shape, *event_shape).
- Returns
Tensor of shape batch_shape containing the value of the loss for each event in x.
- Return type
Tensor
- static parametrize_qk(F, quantile_knots: Union[NDArray, Symbol]) Tuple[Union[NDArray, Symbol], Union[NDArray, Symbol], Union[NDArray, Symbol], Union[NDArray, Symbol]] [source]#
Function to parametrize the x or y positions of the num_qk quantile knots.
- Parameters
quantile_knots – x or y positions of the quantile knots shape: (*batch_shape, num_qk)
- Returns
qk – x or y positions of the quantile knots (qk), with index=1, …, num_qk-1, shape: (*batch_shape, num_qk-1)
qk_plus – x or y positions of the quantile knots (qk), with index=2, …, num_qk, shape: (*batch_shape, num_qk-1)
qk_l – x or y positions of the left-most quantile knot (qk), shape: (*batch_shape)
qk_r – x or y positions of the right-most quantile knot (qk), shape: (*batch_shape)
- static parametrize_spline(F, spline_knots: Union[NDArray, Symbol], qk: Union[NDArray, Symbol], qk_plus: Union[NDArray, Symbol], num_pieces: int, tol: float = 0.0001) Tuple[Union[NDArray, Symbol], Union[NDArray, Symbol]] [source]#
Function to parametrize the x or y positions of the spline knots :param spline_knots: variable that parameterizes the spline knot positions :param qk: x or y positions of the quantile knots (qk),
with index=1, …, num_qk-1, shape: (*batch_shape, num_qk-1)
- Parameters
qk_plus – x or y positions of the quantile knots (qk), with index=2, …, num_qk, shape: (*batch_shape, num_qk-1)
num_pieces – number of spline knot pieces
tol – tolerance hyperparameter for numerical stability
- Returns
- static parametrize_tail(F, beta: Union[NDArray, Symbol], qk_x: Union[NDArray, Symbol], qk_y: Union[NDArray, Symbol]) Tuple[Union[NDArray, Symbol], Union[NDArray, Symbol]] [source]#
Function to parametrize the tail parameters.
Note that the exponential tails are given by q(alpha) = a_l log(alpha) + b_l if left tail = a_r log(1-alpha) + b_r if right tail
where a_l=1/beta_l, b_l=-a_l*log(qk_x_l)+q(qk_x_l) a_r=1/beta_r, b_r=a_r*log(1-qk_x_r)+q(qk_x_r)
- Parameters
- Returns
tail_a – a_l or a_r as described above
tail_b – b_l or b_r as described above
- quantile(input_alpha: Union[NDArray, Symbol]) Union[NDArray, Symbol] [source]#
Calculates quantiles for the given levels.
- Parameters
level – Level values to use for computing the quantiles. level should be a 1d tensor of level values between 0 and 1.
- Returns
Quantile values corresponding to the levels passed. The return shape is
(num_levels, …DISTRIBUTION_SHAPE…),
where DISTRIBUTION_SHAPE is the shape of the underlying distribution.
- Return type
quantiles
- quantile_internal(alpha: Union[NDArray, Symbol], axis: Optional[int] = None) Union[NDArray, Symbol] [source]#
Evaluates the quantile function at the quantile levels input_alpha :param alpha: Tensor of shape = (*batch_shape,) if axis=None, or containing an
additional axis on the specified position, otherwise
- Parameters
axis – Index of the axis containing the different quantile levels which are to be computed. Read the description below for detailed information
- Returns
Quantiles tensor, of the same shape as alpha
- Return type
Tensor
- quantile_spline(alpha: Union[NDArray, Symbol], axis: Optional[int] = None) Union[NDArray, Symbol] [source]#
Evaluates the spline functions at the quantile levels contained in alpha.
- Parameters
alpha – Input quantile levels
axis – Axis along which to expand For details of input_alpha shape and axis, refer to the description in quantile_internal
- Returns
Quantiles tensor with shape = (*batch_shape, num_qk-1) if axis = None = (1, *batch_shape, num_qk-1) if axis = 0 = (*batch_shape, num_qk-1, num_pieces) if axis = -2
- Return type
Tensor
- quantile_tail(alpha: Union[NDArray, Symbol], axis: Optional[int] = None, left_tail: bool = True) Union[NDArray, Symbol] [source]#
Evaluates the tail functions at the quantile levels contained in alpha :param alpha: Input quantile levels :param axis: Axis along which to expand
For details of input_alpha shape and axis, refer to the description in quantile_internal
- Parameters
left_tail – If True, compute the quantile for the left tail Otherwise, compute the quantile for the right tail
- Returns
Quantiles tensor, of the same shape as alpha
- Return type
Tensor
- class gluonts.mx.distribution.isqf.ISQFOutput(num_pieces: int, qk_x: List[float], tol: float = 0.0001)[source]#
Bases:
DistributionOutput
DistributionOutput class for the Incremental (Spline) Quantile Function.
- Parameters
num_pieces – number of spline pieces for each spline ISQF reduces to IQF when num_pieces = 1
alpha – Tensor containing the x-positions of quantile knots
tol – tolerance for numerical safeguarding
- distribution(distr_args, loc: Optional[Union[NDArray, Symbol]] = None, scale: Optional[Union[NDArray, Symbol]] = None) ISQF [source]#
function outputing the distribution class distr_args: distribution arguments loc: shift to the data mean scale: scale to the data
- classmethod domain_map(F, *args: Union[NDArray, Symbol], tol: float = 0.0001) Tuple[Union[NDArray, Symbol], Union[NDArray, Symbol], Union[NDArray, Symbol], Union[NDArray, Symbol], Union[NDArray, Symbol]] [source]#
Domain map function The inputs of this function are specified by self.args_dim knots, heights:
parameterizing the x-/ y-positions of the spline knots, shape = (*batch_shape, (num_qk-1)*num_pieces) q: parameterizing the y-positions of the quantile knots, shape = (*batch_shape, num_qk) beta_l, beta_r: parameterizing the left/right tail, shape = (*batch_shape, 1)
- property event_shape: Tuple#
Shape of each individual event contemplated by the distributions that this object constructs.
- class gluonts.mx.distribution.isqf.TransformedISQF(base_distribution: ISQF, transforms: List[Bijection])[source]#
Bases:
TransformedDistribution
,ISQF
- crps(y: Union[NDArray, Symbol]) Union[NDArray, Symbol] [source]#
Compute the continuous rank probability score (CRPS) of x according to the distribution.
- Parameters
x – Tensor of shape (*batch_shape, *event_shape).
- Returns
Tensor of shape batch_shape containing the CRPS score, according to the distribution, for each event in x.
- Return type
Tensor