Source code for gluonts.mx.model.canonical._estimator

# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.

from functools import partial
from typing import List

from mxnet.gluon import HybridBlock, nn

from gluonts.core.component import validated
from gluonts.dataset.common import Dataset
from gluonts.dataset.field_names import FieldName
from gluonts.dataset.loader import (
    DataLoader,
    TrainDataLoader,
    ValidationDataLoader,
)
from gluonts.model.predictor import Predictor
from gluonts.mx.batchify import batchify
from gluonts.mx.block.feature import FeatureEmbedder
from gluonts.mx.block.rnn import RNN
from gluonts.mx.distribution import DistributionOutput, StudentTOutput
from gluonts.mx.model.estimator import GluonEstimator
from gluonts.mx.model.predictor import RepresentableBlockPredictor
from gluonts.mx.trainer import Trainer
from gluonts.mx.util import get_hybrid_forward_input_names
from gluonts.time_feature import time_features_from_frequency_str
from gluonts.transform import (
    AddTimeFeatures,
    AsNumpyArray,
    InstanceSplitter,
    SelectFields,
    SetFieldIfNotPresent,
    TestSplitSampler,
    Transformation,
    ValidationSplitSampler,
)

from ._network import CanonicalPredictionNetwork, CanonicalTrainingNetwork


class CanonicalEstimator(GluonEstimator):
    @validated()
    def __init__(
        self,
        model: HybridBlock,
        is_sequential: bool,
        freq: str,
        context_length: int,
        prediction_length: int,
        trainer: Trainer = Trainer(),
        num_parallel_samples: int = 100,
        cardinality: List[int] = list([1]),
        embedding_dimension: int = 10,
        distr_output: DistributionOutput = StudentTOutput(),
        batch_size: int = 32,
    ) -> None:
        super().__init__(trainer=trainer, batch_size=batch_size)

        # TODO: error checking
        self.freq = freq
        self.context_length = context_length
        self.prediction_length = prediction_length
        self.distr_output = distr_output
        self.num_parallel_samples = num_parallel_samples
        self.cardinality = cardinality
        self.embedding_dimensions = [embedding_dimension for _ in cardinality]
        self.model = model
        self.is_sequential = is_sequential

    def create_transformation(self) -> Transformation:
        return (
            AsNumpyArray(field=FieldName.TARGET, expected_ndim=1)
            + AddTimeFeatures(
                start_field=FieldName.START,
                target_field=FieldName.TARGET,
                output_field=FieldName.FEAT_TIME,
                time_features=time_features_from_frequency_str(self.freq),
                pred_length=self.prediction_length,
            )
            + SetFieldIfNotPresent(
                field=FieldName.FEAT_STATIC_CAT, value=[0.0]
            )
            + AsNumpyArray(field=FieldName.FEAT_STATIC_CAT, expected_ndim=1)
        )

    def _create_instance_splitter(self, mode: str):
        assert mode in ["training", "validation", "test"]

        instance_sampler = {
            "training": ValidationSplitSampler(
                min_future=self.prediction_length
            ),
            "validation": ValidationSplitSampler(
                min_future=self.prediction_length
            ),
            "test": TestSplitSampler(),
        }[mode]

        return InstanceSplitter(
            target_field=FieldName.TARGET,
            is_pad_field=FieldName.IS_PAD,
            start_field=FieldName.START,
            forecast_start_field=FieldName.FORECAST_START,
            instance_sampler=instance_sampler,
            time_series_fields=[FieldName.FEAT_TIME],
            past_length=self.context_length,
            future_length=self.prediction_length,
        )

    def create_training_data_loader(
        self,
        data: Dataset,
        **kwargs,
    ) -> DataLoader:
        input_names = get_hybrid_forward_input_names(CanonicalTrainingNetwork)
        instance_splitter = self._create_instance_splitter("training")
        return TrainDataLoader(
            dataset=data,
            transform=instance_splitter + SelectFields(input_names),
            batch_size=self.batch_size,
            stack_fn=partial(batchify, ctx=self.trainer.ctx, dtype=self.dtype),
            **kwargs,
        )

    def create_validation_data_loader(
        self,
        data: Dataset,
        **kwargs,
    ) -> DataLoader:
        input_names = get_hybrid_forward_input_names(CanonicalTrainingNetwork)
        instance_splitter = self._create_instance_splitter("validation")
        return ValidationDataLoader(
            dataset=data,
            transform=instance_splitter + SelectFields(input_names),
            batch_size=self.batch_size,
            stack_fn=partial(batchify, ctx=self.trainer.ctx, dtype=self.dtype),
        )

    def create_training_network(self) -> CanonicalTrainingNetwork:
        return CanonicalTrainingNetwork(
            embedder=FeatureEmbedder(
                cardinalities=self.cardinality,
                embedding_dims=self.embedding_dimensions,
            ),
            model=self.model,
            distr_output=self.distr_output,
            is_sequential=self.is_sequential,
        )

    def create_predictor(
        self,
        transformation: Transformation,
        trained_network: CanonicalTrainingNetwork,
    ) -> Predictor:
        prediction_splitter = self._create_instance_splitter("test")

        prediction_net = CanonicalPredictionNetwork(
            embedder=trained_network.embedder,
            model=trained_network.model,
            distr_output=trained_network.distr_output,
            is_sequential=trained_network.is_sequential,
            prediction_len=self.prediction_length,
            num_parallel_samples=self.num_parallel_samples,
            params=trained_network.collect_params(),
        )

        return RepresentableBlockPredictor(
            input_transform=transformation + prediction_splitter,
            prediction_net=prediction_net,
            batch_size=self.batch_size,
            prediction_length=self.prediction_length,
            ctx=self.trainer.ctx,
        )


[docs]class CanonicalRNNEstimator(CanonicalEstimator): @validated() def __init__( self, freq: str, context_length: int, prediction_length: int, trainer: Trainer = Trainer(), num_layers: int = 1, num_cells: int = 50, cell_type: str = "lstm", num_parallel_samples: int = 100, cardinality: List[int] = list([1]), embedding_dimension: int = 10, distr_output: DistributionOutput = StudentTOutput(), ) -> None: model = RNN( mode=cell_type, num_layers=num_layers, num_hidden=num_cells ) super().__init__( model=model, is_sequential=True, freq=freq, context_length=context_length, prediction_length=prediction_length, trainer=trainer, num_parallel_samples=num_parallel_samples, cardinality=cardinality, embedding_dimension=embedding_dimension, distr_output=distr_output, )
class MLPForecasterEstimator(CanonicalEstimator): @validated() def __init__( self, freq: str, context_length: int, prediction_length: int, trainer: Trainer = Trainer(), hidden_dim_sequence=list([50]), num_parallel_samples: int = 100, cardinality: List[int] = list([1]), embedding_dimension: int = 10, distr_output: DistributionOutput = StudentTOutput(), ) -> None: model = nn.HybridSequential() for layer, layer_dim in enumerate(hidden_dim_sequence): model.add( nn.Dense( layer_dim, flatten=False, activation="relu", prefix="mlp_%d_" % layer, ) ) super().__init__( model=model, is_sequential=False, freq=freq, context_length=context_length, prediction_length=prediction_length, trainer=trainer, num_parallel_samples=num_parallel_samples, cardinality=cardinality, embedding_dimension=embedding_dimension, distr_output=distr_output, )