# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
import multiprocessing as mp
from functools import partial
from toolz.itertoolz import partition_all as into_batches
from toolz.functoolz import identity
[docs]def map_to_queue(fn, emitter, queue, encode, batch_size):
for batch in into_batches(batch_size, map(encode, fn(emitter))):
queue.put(batch)
queue.put(sentinel)
[docs]class ParApplyIterator:
def __init__(self, procs, queue, decode):
self.procs = procs
self.queue = queue
self.decode = decode
self._current = []
self._sentinel_count = 0
[docs] def join(self):
for proc in self.procs:
proc.join()
[docs] def start(self):
for proc in self.procs:
proc.start()
[docs] def kill(self):
for proc in self.procs:
proc.kill()
[docs] def terminate(self):
for proc in self.procs:
proc.terminate()
def __next__(self):
while not self._current:
val = self.queue.get()
if val is sentinel:
self._sentinel_count += 1
if self._sentinel_count >= len(self.procs):
raise StopIteration
else:
self._current = list(reversed(val))
return self.decode(self._current.pop())
[docs]class ParApply:
def __init__(
self,
fn,
emitter,
batch_size=1,
queue_size=50,
encode=identity,
decode=identity,
):
self.fn = fn
self.emitter = emitter
self.batch_size = batch_size
self.queue_size = queue_size
self.encode = encode
self.decode = decode
def __iter__(self):
queue = mp.Queue(self.queue_size)
Process = partial(mp.Process, target=map_to_queue, daemon=True)
it = ParApplyIterator(
procs=[
Process(
args=(
self.fn,
emitter,
queue,
self.encode,
self.batch_size,
)
)
for emitter in self.emitter
],
queue=queue,
decode=self.decode,
)
it.start()
return it