Source code for gluonts.torch.model.deepar.lightning_module

# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.

import pytorch_lightning as pl
import torch
from torch.optim.lr_scheduler import ReduceLROnPlateau

from gluonts.core.component import validated
from gluonts.torch.modules.loss import DistributionLoss, NegativeLogLikelihood
from gluonts.torch.util import weighted_average

from .module import DeepARModel


[docs]class DeepARLightningModule(pl.LightningModule): """ A ``pl.LightningModule`` class that can be used to train a ``DeepARModel`` with PyTorch Lightning. This is a thin layer around a (wrapped) ``DeepARModel`` object, that exposes the methods to evaluate training and validation loss. Parameters ---------- model ``DeepARModel`` to be trained. loss Loss function to be used for training, default: ``NegativeLogLikelihood()``. lr Learning rate, default: ``1e-3``. weight_decay Weight decay regularization parameter, default: ``1e-8``. patience Patience parameter for learning rate scheduler, default: ``10``. """ @validated() def __init__( self, model: DeepARModel, loss: DistributionLoss = NegativeLogLikelihood(), lr: float = 1e-3, weight_decay: float = 1e-8, patience: int = 10, ) -> None: super().__init__() self.save_hyperparameters() self.model = model self.loss = loss self.lr = lr self.weight_decay = weight_decay self.patience = patience self.example_input_array = tuple( [ torch.zeros(shape, dtype=self.model.input_types()[name]) for (name, shape) in self.model.input_shapes().items() ] )
[docs] def forward(self, *args, **kwargs): return self.model(*args, **kwargs)
def _compute_loss(self, batch): feat_static_cat = batch["feat_static_cat"] feat_static_real = batch["feat_static_real"] past_time_feat = batch["past_time_feat"] past_target = batch["past_target"] future_time_feat = batch["future_time_feat"] future_target = batch["future_target"] past_observed_values = batch["past_observed_values"] future_observed_values = batch["future_observed_values"] params, scale, _, _, _ = self.model.unroll_lagged_rnn( feat_static_cat, feat_static_real, past_time_feat, past_target, past_observed_values, future_time_feat, future_target, ) distr = self.model.output_distribution(params, scale) context_target = past_target[:, -self.model.context_length + 1 :] target = torch.cat( (context_target, future_target), dim=1, ) loss_values = self.loss(distr, target) context_observed = past_observed_values[ :, -self.model.context_length + 1 : ] observed_values = torch.cat( (context_observed, future_observed_values), dim=1 ) if len(self.model.target_shape) == 0: loss_weights = observed_values else: loss_weights, _ = observed_values.min(dim=-1, keepdim=False) return weighted_average(loss_values, weights=loss_weights)
[docs] def training_step(self, batch, batch_idx: int): # type: ignore """ Execute training step. """ train_loss = self._compute_loss(batch) self.log( "train_loss", train_loss, on_epoch=True, on_step=False, prog_bar=True, ) return train_loss
[docs] def validation_step(self, batch, batch_idx: int): # type: ignore """ Execute validation step. """ val_loss = self._compute_loss(batch) self.log( "val_loss", val_loss, on_epoch=True, on_step=False, prog_bar=True ) return val_loss
[docs] def configure_optimizers(self): """ Returns the optimizer to use. """ optimizer = torch.optim.Adam( self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay, ) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": ReduceLROnPlateau( optimizer=optimizer, mode="min", factor=0.5, patience=self.patience, ), "monitor": "train_loss", }, }