Source code for gluonts.torch.modules.loss
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
import torch
from pydantic import BaseModel
[docs]class DistributionLoss(BaseModel):
"""
A ``torch.nn.Module`` extensions that computes loss values by comparing a
``Distribution`` (prediction) to a ``Tensor`` (ground-truth).
"""
def __call__(
self, input: torch.distributions.Distribution, target: torch.Tensor
) -> torch.Tensor:
"""
Compute the loss of predicting ``target`` with the ``input``
distribution.
Parameters
----------
input
Distribution object representing the prediction.
target
Tensor containing the ground truth.
Returns
-------
torch.Tensor
Tensor containing loss values, with the same shape as ``target``.
Raises
------
NotImplementedError
[description]
"""
raise NotImplementedError
[docs]class NegativeLogLikelihood(DistributionLoss):
"""
Compute the negative log likelihood loss.
Parameters
----------
beta: float in range (0, 1)
beta parameter from the paper: "On the Pitfalls of Heteroscedastic
Uncertainty Estimation with Probabilistic Neural Networks" by
Seitzer et al. 2022
https://openreview.net/forum?id=aPOpXlnV1T
"""
beta: float = 0.0
def __call__(
self, input: torch.distributions.Distribution, target: torch.Tensor
) -> torch.Tensor:
nll = -input.log_prob(target)
if self.beta > 0.0:
variance = input.variance
nll = nll * (variance.detach() ** self.beta)
return nll
[docs]class CRPS(DistributionLoss):
def __call__(
self, input: torch.distributions.Distribution, target: torch.Tensor
) -> torch.Tensor:
return input.crps(target)
[docs]class EnergyScore(DistributionLoss):
def __call__(self, input, target: torch.Tensor) -> torch.Tensor:
return input.energy_score(target)