gluonts.nursery.tsbench.src.tsbench.evaluations.metrics.performance module#
- class gluonts.nursery.tsbench.src.tsbench.evaluations.metrics.performance.Performance(training_time: gluonts.nursery.tsbench.src.tsbench.evaluations.metrics.metric.Metric, latency: gluonts.nursery.tsbench.src.tsbench.evaluations.metrics.metric.Metric, num_model_parameters: gluonts.nursery.tsbench.src.tsbench.evaluations.metrics.metric.Metric, num_gradient_updates: gluonts.nursery.tsbench.src.tsbench.evaluations.metrics.metric.Metric, ncrps: gluonts.nursery.tsbench.src.tsbench.evaluations.metrics.metric.Metric, mase: gluonts.nursery.tsbench.src.tsbench.evaluations.metrics.metric.Metric, smape: gluonts.nursery.tsbench.src.tsbench.evaluations.metrics.metric.Metric, nrmse: gluonts.nursery.tsbench.src.tsbench.evaluations.metrics.metric.Metric, nd: gluonts.nursery.tsbench.src.tsbench.evaluations.metrics.metric.Metric)[source]#
Bases:
object
The performance class encapsulates the metrics that are recorded for configurations.
- classmethod from_dict(metrics: dict[str, float | int]) Performance [source]#
Initializes a new performance object from the given 1D dictionary.
Metrics are expected to be provided via <metric>_mean and <metric>_std keys.
- classmethod metrics() list[str] [source]#
Returns the list of metrics that are exposed by the performance class.
- num_gradient_updates: gluonts.nursery.tsbench.src.tsbench.evaluations.metrics.metric.Metric#
- num_model_parameters: gluonts.nursery.tsbench.src.tsbench.evaluations.metrics.metric.Metric#
- classmethod to_dataframe(performances: list[Performance], std: bool = True) pd.DataFrame [source]#
Returns a data frame representing the provided performances.