Source code for gluonts.model.trivial.constant
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
import numpy as np
from gluonts.core.component import validated
from gluonts.dataset.common import DataEntry
from gluonts.dataset.field_names import FieldName
from gluonts.dataset.util import forecast_start
from gluonts.model.forecast import SampleForecast
from gluonts.model.predictor import RepresentablePredictor
[docs]class ConstantPredictor(RepresentablePredictor):
"""
A `Predictor` that always produces the same forecast.
Parameters
----------
samples
Samples to use to construct SampleForecast objects for every
prediction.
"""
@validated()
def __init__(self, samples: np.ndarray) -> None:
super().__init__(samples.shape[1])
self.samples = samples
[docs] def predict_item(self, item: DataEntry) -> SampleForecast:
return SampleForecast(
samples=self.samples,
start_date=item["start"],
item_id=item.get(FieldName.ITEM_ID),
)
[docs]class ConstantValuePredictor(RepresentablePredictor):
"""
A `Predictor` that always produces the same value as forecast.
Parameters
----------
value
The value to use as forecast.
prediction_length
Prediction horizon.
"""
@validated()
def __init__(
self,
prediction_length: int,
value: float = 0.0,
# since we are emitting a constant values, we just predict a single
# line on default
num_samples: int = 1,
) -> None:
super().__init__(prediction_length=prediction_length)
self.value = value
self.num_samples = num_samples
[docs] def predict_item(self, item: DataEntry) -> SampleForecast:
samples_shape = self.num_samples, self.prediction_length
samples = np.full(samples_shape, self.value)
return SampleForecast(
samples=samples,
start_date=forecast_start(item),
item_id=item.get("item_id"),
)