Source code for gluonts.mx.distribution.categorical

# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.

from typing import List, Tuple

import mxnet as mx
import numpy as np

from gluonts.core.component import validated
from gluonts.mx import Tensor

from .distribution import Distribution, _sample_multiple, getF
from .distribution_output import DistributionOutput


[docs]class Categorical(Distribution): r""" A categorical distribution over num_cats-many categories. Parameters ---------- log_probs Tensor containing log probabilities of the individual categories, of shape `(*batch_shape, num_cats)`. F """ @validated() def __init__(self, log_probs: Tensor) -> None: super().__init__() self.log_probs = log_probs self.num_cats = self.log_probs.shape[-1] self.cats = self.F.arange(self.num_cats) self._probs = None @property def F(self): return getF(self.log_probs) @property def probs(self): if self._probs is None: self._probs = self.log_probs.exp() return self._probs @property def batch_shape(self) -> Tuple: return self.log_probs.shape[:-1] @property def event_shape(self) -> Tuple: return () @property def event_dim(self) -> int: return 0 @property def mean(self): return (self.probs * self.cats).sum(axis=-1) @property def stddev(self): ex2 = (self.probs * self.cats.square()).sum(axis=-1) return (ex2 - self.mean.square()).sqrt()
[docs] def log_prob(self, x): F = self.F mask = F.one_hot(x, self.num_cats) log_prob = F.broadcast_mul(self.log_probs, mask).sum(axis=-1) return log_prob
[docs] def sample(self, num_samples=None, dtype=np.int32): def s(bin_probs): F = self.F indices = F.sample_multinomial(bin_probs) return indices return _sample_multiple(s, self.probs, num_samples=num_samples).astype( dtype )
@property def args(self) -> List: return [self.log_probs]
[docs]class CategoricalOutput(DistributionOutput): distr_cls: type = Categorical @validated() def __init__(self, num_cats: int, temperature: float = 1.0) -> None: super().__init__() assert num_cats > 1, "Number of categories must be larger than one." assert temperature > 0, "Temperature must be larger than zero." self.args_dim = {"num_cats": num_cats} self.distr_cls = Categorical self.num_cats = num_cats self.temperature = temperature
[docs] def domain_map(self, F, probs): if not mx.autograd.is_training(): probs = probs / self.temperature log_probs_s = F.log_softmax(probs) return log_probs_s
[docs] def distribution( self, distr_args, loc=None, scale=None, **kwargs ) -> Distribution: distr = Categorical(distr_args) return distr
@property def event_shape(self) -> Tuple: return ()