Source code for gluonts.mx.distribution.gaussian

# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.

import math
from functools import partial
from typing import Dict, List, Optional, Tuple

import numpy as np

from gluonts.core.component import validated
from gluonts.mx import Tensor

from .distribution import Distribution, _sample_multiple, getF, softplus
from .distribution_output import DistributionOutput


[docs]class Gaussian(Distribution): r""" Gaussian distribution. Parameters ---------- mu Tensor containing the means, of shape `(*batch_shape, *event_shape)`. std Tensor containing the standard deviations, of shape `(*batch_shape, *event_shape)`. F """ is_reparameterizable = True @validated() def __init__(self, mu: Tensor, sigma: Tensor) -> None: self.mu = mu self.sigma = sigma @property def F(self): return getF(self.mu) @property def batch_shape(self) -> Tuple: return self.mu.shape @property def event_shape(self) -> Tuple: return () @property def event_dim(self) -> int: return 0
[docs] def log_prob(self, x: Tensor) -> Tensor: F = self.F mu, sigma = self.mu, self.sigma return -1.0 * ( F.log(sigma) + 0.5 * math.log(2 * math.pi) + 0.5 * F.square((x - mu) / sigma) )
@property def mean(self) -> Tensor: return self.mu @property def stddev(self) -> Tensor: return self.sigma
[docs] @classmethod def fit(cls, F, samples: Tensor): """ Returns an instance of `Gaussian` after fitting parameters to the given data. Parameters ---------- F samples Tensor of shape (num_samples, batch_size, seq_len) Returns ------- Distribution instance of type `Gaussian`. """ # Compute mean and standard deviations mu = samples.mean(axis=0) sigma = F.sqrt(F.square(samples - mu).mean(axis=0)) return cls(mu=mu, sigma=sigma)
[docs] def cdf(self, x): F = self.F u = F.broadcast_div( F.broadcast_minus(x, self.mu), self.sigma * math.sqrt(2.0) ) return (F.erf(u) + 1.0) / 2.0
[docs] def sample( self, num_samples: Optional[int] = None, dtype=np.float32 ) -> Tensor: return _sample_multiple( partial(self.F.sample_normal, dtype=dtype), mu=self.mu, sigma=self.sigma, num_samples=num_samples, )
[docs] def sample_rep( self, num_samples: Optional[int] = None, dtype=np.float32 ) -> Tensor: def s(mu: Tensor, sigma: Tensor) -> Tensor: raw_samples = self.F.sample_normal( mu=mu.zeros_like(), sigma=sigma.ones_like(), dtype=dtype ) return sigma * raw_samples + mu return _sample_multiple( s, mu=self.mu, sigma=self.sigma, num_samples=num_samples )
[docs] def quantile(self, level: Tensor) -> Tensor: F = self.F # we consider level to be an independent axis and so expand it # to shape (num_levels, 1, 1, ...) for _ in range(self.all_dim): level = level.expand_dims(axis=-1) return F.broadcast_add( self.mu, F.broadcast_mul( self.sigma, math.sqrt(2.0) * F.erfinv(2.0 * level - 1.0) ), )
@property def args(self) -> List: return [self.mu, self.sigma]
[docs]class GaussianOutput(DistributionOutput): args_dim: Dict[str, int] = {"mu": 1, "sigma": 1} distr_cls: type = Gaussian
[docs] @classmethod def domain_map(cls, F, mu, sigma): r""" Maps raw tensors to valid arguments for constructing a Gaussian distribution. Parameters ---------- F mu Tensor of shape `(*batch_shape, 1)` sigma Tensor of shape `(*batch_shape, 1)` Returns ------- Tuple[Tensor, Tensor] Two squeezed tensors, of shape `(*batch_shape)`: the first has the same entries as `mu` and the second has entries mapped to the positive orthant. """ sigma = F.maximum(softplus(F, sigma), cls.eps()) return mu.squeeze(axis=-1), sigma.squeeze(axis=-1)
@property def event_shape(self) -> Tuple: return ()