Source code for gluonts.torch.distributions.distribution_output

# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.

from typing import Dict, Optional, Tuple

import numpy as np
import torch
import torch.nn.functional as F
from torch.distributions import (
    Beta,
    Distribution,
    Gamma,
    Laplace,
    Normal,
    Poisson,
)

from gluonts.core.component import validated
from gluonts.model.forecast_generator import (
    DistributionForecastGenerator,
    ForecastGenerator,
)
from gluonts.torch.distributions import AffineTransformed

from .output import Output


[docs]class DistributionOutput(Output): r""" Class to construct a distribution given the output of a network. """ distr_cls: type @validated() def __init__(self, beta: float = 0.0) -> None: self.beta = beta def _base_distribution(self, distr_args): return self.distr_cls(*distr_args)
[docs] def distribution( self, distr_args, loc: Optional[torch.Tensor] = None, scale: Optional[torch.Tensor] = None, ) -> Distribution: r""" Construct the associated distribution, given the collection of constructor arguments and, optionally, a scale tensor. Parameters ---------- distr_args Constructor arguments for the underlying Distribution type. loc Optional tensor, of the same shape as the batch_shape+event_shape of the resulting distribution. scale Optional tensor, of the same shape as the batch_shape+event_shape of the resulting distribution. """ distr = self._base_distribution(distr_args) if loc is None and scale is None: return distr else: return AffineTransformed(distr, loc=loc, scale=scale)
[docs] def loss( self, target: torch.Tensor, distr_args: Tuple[torch.Tensor, ...], loc: Optional[torch.Tensor] = None, scale: Optional[torch.Tensor] = None, ) -> torch.Tensor: distribution = self.distribution(distr_args, loc=loc, scale=scale) nll = -distribution.log_prob(target) if self.beta > 0.0: variance = distribution.variance nll = nll * (variance.detach() ** self.beta) return nll
@property def event_dim(self) -> int: r""" Number of event dimensions, i.e., length of the `event_shape` tuple, of the distributions that this object constructs. """ return len(self.event_shape)
[docs] def domain_map(self, *args: torch.Tensor): r""" Converts arguments to the right shape and domain. The domain depends on the type of distribution, while the correct shape is obtained by reshaping the trailing axis in such a way that the returned tensors define a distribution of the right event_shape. """ raise NotImplementedError()
@property def forecast_generator(self) -> ForecastGenerator: return DistributionForecastGenerator(self)
[docs]class NormalOutput(DistributionOutput): args_dim: Dict[str, int] = {"loc": 1, "scale": 1} distr_cls: type = Normal
[docs] @classmethod def domain_map(cls, loc: torch.Tensor, scale: torch.Tensor): # type: ignore scale = F.softplus(scale) return loc.squeeze(-1), scale.squeeze(-1)
@property def event_shape(self) -> Tuple: return ()
[docs]class LaplaceOutput(DistributionOutput): args_dim: Dict[str, int] = {"loc": 1, "scale": 1} distr_cls: type = Laplace
[docs] @classmethod def domain_map(cls, loc: torch.Tensor, scale: torch.Tensor): # type: ignore scale = F.softplus(scale) return loc.squeeze(-1), scale.squeeze(-1)
@property def event_shape(self) -> Tuple: return ()
[docs]class BetaOutput(DistributionOutput): args_dim: Dict[str, int] = {"concentration1": 1, "concentration0": 1} distr_cls: type = Beta
[docs] @classmethod def domain_map( # type: ignore cls, concentration1: torch.Tensor, concentration0: torch.Tensor ): epsilon = np.finfo(cls._dtype).eps # machine epsilon concentration1 = F.softplus(concentration1) + epsilon concentration0 = F.softplus(concentration0) + epsilon return concentration1.squeeze(dim=-1), concentration0.squeeze(dim=-1)
@property def event_shape(self) -> Tuple: return () @property def value_in_support(self) -> float: return 0.5
[docs]class GammaOutput(DistributionOutput): args_dim: Dict[str, int] = {"concentration": 1, "rate": 1} distr_cls: type = Gamma
[docs] @classmethod def domain_map(cls, concentration: torch.Tensor, rate: torch.Tensor): # type: ignore epsilon = np.finfo(cls._dtype).eps # machine epsilon concentration = F.softplus(concentration) + epsilon rate = F.softplus(rate) + epsilon return concentration.squeeze(dim=-1), rate.squeeze(dim=-1)
@property def event_shape(self) -> Tuple: return () @property def value_in_support(self) -> float: return 0.5
[docs]class PoissonOutput(DistributionOutput): args_dim: Dict[str, int] = {"rate": 1} distr_cls: type = Poisson
[docs] @classmethod def domain_map(cls, rate: torch.Tensor): # type: ignore rate_pos = F.softplus(rate).clone() return (rate_pos.squeeze(-1),)
# Overwrites the parent class method. We cannot scale using the affine # transformation since Poisson should return integers. Instead we scale # the parameters.
[docs] def distribution( self, distr_args, loc: Optional[torch.Tensor] = None, scale: Optional[torch.Tensor] = None, ) -> Distribution: (rate,) = distr_args if scale is not None: rate *= scale return Poisson(rate=rate)
@property def event_shape(self) -> Tuple: return ()