Source code for gluonts.torch.model.i_transformer.lightning_module
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
import lightning.pytorch as pl
import torch
from gluonts.core.component import validated
from gluonts.itertools import select
from .module import ITransformerModel
[docs]class ITransformerLightningModule(pl.LightningModule):
"""
A ``pl.LightningModule`` class that can be used to train a
``ITransformerModel`` with PyTorch Lightning.
This is a thin layer around a (wrapped) ``ITransformerModel`` object,
that exposes the methods to evaluate training and validation loss.
Parameters
----------
model_kwargs
Keyword arguments to construct the ``ITransformerModel`` to be trained.
num_parallel_samples:
Number of evaluation samples per time series to sample during inference.
lr
Learning rate.
weight_decay
Weight decay regularization parameter.
"""
@validated()
def __init__(
self,
model_kwargs: dict,
num_parallel_samples: int = 100,
lr: float = 1e-3,
weight_decay: float = 1e-8,
):
super().__init__()
self.save_hyperparameters()
self.model = ITransformerModel(**model_kwargs)
self.num_parallel_samples = num_parallel_samples
self.lr = lr
self.weight_decay = weight_decay
self.inputs = self.model.describe_inputs()
[docs] def forward(self, *args, **kwargs):
distr_args, loc, scale = self.model.forward(*args, **kwargs)
distr = self.model.distr_output.distribution(distr_args, loc, scale)
samples = distr.sample((self.num_parallel_samples,))
if self.model.nonnegative_pred_samples:
samples = torch.relu(samples)
return samples.transpose(0, 1)
[docs] def training_step(self, batch, batch_idx: int): # type: ignore
"""
Execute training step.
"""
train_loss = self.model.loss(
**select(self.inputs, batch),
future_target=batch["future_target"],
future_observed_values=batch["future_observed_values"],
).mean()
self.log(
"train_loss",
train_loss,
on_epoch=True,
on_step=False,
prog_bar=True,
)
return train_loss
[docs] def validation_step(self, batch, batch_idx: int): # type: ignore
"""
Execute validation step.
"""
val_loss = self.model.loss(
**select(self.inputs, batch),
future_target=batch["future_target"],
future_observed_values=batch["future_observed_values"],
).mean()
self.log(
"val_loss", val_loss, on_epoch=True, on_step=False, prog_bar=True
)
return val_loss
[docs] def configure_optimizers(self):
"""
Returns the optimizer to use.
"""
return torch.optim.Adam(
self.model.parameters(),
lr=self.lr,
weight_decay=self.weight_decay,
)